Navigation

  • Skip to Content
NTNU Home

HydroCen

  • HydroCen
  • Research
    • Hydropower structures
    • Turbine and generators
    • Market and services
    • Environmental design
    • Interdisciplinary projects
    • Laboratories
    • Associated projects
    • HydroCen Laboratories
  • Publications
  • News blog
  • Contact
  • About HydroCen
    • About HydroCen
    • Organisation
    • Partners
    • Board
    • Scientific Committee
    • Strategy and goals
  • International
    • International collaboration
    • Cross Atlantic Hydropower Research Alliance
    • DigiSur
    • EERA JP Hydropower
    • FishPath
    • FIThydro
    • Francis99
    • FranSed
    • HydroFlex
    • Hydro-Himalaya
  • Login Sharepoint
  1. HydroCen International FranSed Work Packages
  2. WP 3
  3. Task 3.5 CFD analysis of sediment erosion of Francis turbine

Språkvelger

Task 3.5 CFD analysis of sediment erosion of Francis turbine

×
  • International collaboration
  • Cross Atlantic Hydropower Research Alliance
  • DigiSur
  • EERA JP Hydropower
  • FishPath
  • FIThydro
  • Francis99
  • FranSed
    • About
    • Work Packages
      • WP 1
      • WP 2
      • WP 3
        • WP 3 Objectives
        • Task 3.1 Scaling for prototype turbine
        • Task 3.2 Sediment erosion model for ANSYS
        • Task 3.3 Experimental setup
        • Task 3.4 Numerical model
        • Task 3.5 CFD analysis of sediment erosion of Francis turbine
      • WP 4
      • WP 5
      • WP 6
    • News and Publications
    • FranSed Project Team
    • Contact
  • HydroFlex
  • Hydro-Himalaya

fransed logo

    FranSed logo. Logo.

MENU

Task 3.5

Task 3.5 : CFD-analysis of the sediment erosion of the Francis turbine

The major objective of this project activity is to carry out CFD-analysis of the sediment erosion of the Francis turbine.

The numerical model will be used for CFD analysis of prototype Francis turbine. The effect of various operating and sediment parameters will be evaluated. The operating conditions for different sediment loadings will be optimized.

Deliverables 3.5

  • Deliverables

D3.5   Publication on the optimized turbine design and operating conditions for different sedimentation loadings     -M36

 

  • Milestones

MS3.10   Report from the evaluation sediment erosion numerically for Francis turbine    -M34

MS3.11   Report from the optimization of the turbine design and operating conditions     -M36

NTNU – Norwegian University of Science and Technology

  • For employees
  • |
  • For students
  • |
  • Intranet
  • |
  • Blackboard

Studies

  • Master's programmes in English
  • For exchange students
  • PhD opportunities
  • Courses
  • Career development
  • Continuing education
  • Application process

News

  • NTNU News
  • Vacancies

About NTNU

  • About the university
  • Libraries
  • NTNU's strategy
  • Research excellence
  • Strategic research areas
  • Organizational chart

Contact

  • Contact NTNU
  • Employees
  • Find experts
  • Press contacts
  • Researcher support
  • Maps

NTNU in three cities

  • NTNU in Gjøvik
  • NTNU in Trondheim
  • NTNU in Ålesund

About this website

  • Use of cookies
  • Accessibility statement
  • Privacy policy
  • Editorial responsibility
Sign In
NTNU logo