Control Systems and AI

Department of Engineering Cybernetics

 

Control and AI for Cyber-Physical Systems

 

Process Control Systems

The research on process control covers applications within oil and gas production, new energy systems, plants for CO2 capture, chemical plants, etc.

The main fields of research are optimization-based methods for control and estimation, production optimization, nonlinear control theory, parameter estimation and nonlinear state estimation/observer design.

Applications

  • Optimization of oil and gas production
  • Pulp & paper
  • Polymer production and other petrochemical industry
  • Metalurgical processes
  • Hydrocarbon drilling

 

Industrial Computer and Instrumentation Systems

The research covers theory as well as architecture and design of hardware and software necessary to implement various control and surveillance functionality with a given performance. Typically this may be a distributed solution with embedded real time application using physical input/output connected to instrumentation in various processes and devices, and an operator interface for surveillance and interaction. Safety, security, dependability, timeliness and other measures for quality of service are used as performance measures. Here the activity is described in sub areas, even though the areas are strongly interconnected and also embedded in the other activities at Engineering Cybernetics. The research activities are in several different areas:

  • Instrumentation
  • Real Time Programming
  • Embedded Systems
  • Safety, Security and Reliability
  • Fisheries and Aquaculture
  • Medical Cybernetics - Biomedical
  • Human Machine Interface

Applications

  • Safety, Security and Reliability
  • Machine and Process Safety
  • Biomechanical instrumentation
  • Smoke detectors
  • Wireless instrumentation
  • Software and algorithms for medical diagnostics
  • Wind power
  • Smart grids
  • Prosthesis control
  • Embedded systems for
    • medical applications
    • robotics
    • marine applications

 

Big Data Cybernetics

The research conducted in Big Data Cybernetics focuses on the development of advanced data-driven control and modelling techniques like hybrid analysis and modeling (HAM) and Reinforcement Learning, that bridge the fields of artificial intelligence and physics/knowledge-based methods. One aim is to enable emerging AI technologies to gain fairness, accountability, transparency, explainability and trustworthiness. Another aim is to introduce state-of-the-art AI methods in cybernetics in novel ways.

Applications

  • Computational mechanics: Computational Fluid Dynamics, Computational Solid Mechanics, Turbulence
  • Smarter Electric Energy: wind power, houses and buildings
  • Future mobility solutions: Autonomous vehicles
  • Oil and gas: Porous media flow, drilling, geosciences
  • Process technology: Aluminum extraction, Electric arc furnaces
  • Pedagogy

 


Research activity

Viser 30 av 1004 for
Publikasjoner Forfattere Tidsskrift År
Using STPA for hazard identification and comparison of hybrid power and propulsion systems at an early design stage A.S. Hullein, B. Rokseth, I. Utne ...flere forfattere Ocean Engineering 2024
Physics-guided federated learning as an enabler for digital twins F. Stadtmann, E.R. Furevik, A. Rasheed, T. Kvamsdal ...flere forfattere Expert Systems with Applications 2024
Correlation-based outlier detection for ships’ in-service datasets P. Gupta, A. Rasheed, S. Steen ...flere forfattere Journal of Big Data 2024
Enhancing wind field resolution in complex terrain through a knowledge-driven machine learning approach J.W. Wold, F. Stadtmann, A. Rasheed, M. Tabib, O. San, J.-T. Horn ...flere forfattere Engineering Applications of Artificial Intelligence 2024
Modular control architecture for safe marine navigation: Reinforcement learning with predictive safety filters A. Vaaler, S.J. Husa, D. Menges, T.N. Larsen, A. Rasheed ...flere forfattere Artificial Intelligence 2024
Communication-aware formation control for networks of AUVs S.A. Hoff, J. Matous, D. Varagnolo, K.Y. Pettersen ...flere forfattere European Journal of Control 2024
A hierarchical framework for minimising emissions in hybrid gas-renewable energy systems under forecast uncertainty K.T. Hoang, C.A. Thilker, B.R. Knudsen, L. Imsland ...flere forfattere Applied Energy 2024
Reinforcement learning based MPC with neural dynamical models S. Adhau, S. Gros, S. Skogestad ...flere forfattere European Journal of Control 2024
Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy B. Rasheed, O. Bjelland, A.F. Dalen, U.A. Schaarschmidt, H.G. Schaathun, M.D. Pedersen, M. Steinert, R.T. Bye ...flere forfattere Computer Methods and Programs in Biomedicine 2024
Nonlinear Model Predictive Control for Enhanced Navigation of Autonomous Surface Vessels D. Menges, T. Tengesdal, A. Rasheed ...flere forfattere IFAC-PapersOnLine 2024
Data-Driven Predictive Control and MPC: Do we achieve optimality? A.S. Anand, S. Sawant, D. Reinhardt, S. Gros ...flere forfattere IFAC-PapersOnLine 2024
Tuning of Online Feedback Optimization for setpoint tracking in centrifugal compressors M. Zagorowska, L. Ortmann, A. Rupenyan, M. Mercangoz, L. Imsland ...flere forfattere IFAC-PapersOnLine 2024
Energy Efficient Temperature and Humidity Control in Building Climate Systems F. Ghawash, M. Hovd, B. Schofield ...flere forfattere IFAC-PapersOnLine 2024
Complementarity-constrained predictive control for efficient gas-balanced hybrid power systems K.T. Hoang, B.R. Knudsen, L. Imsland ...flere forfattere IFAC-PapersOnLine 2024
Energy Optimal Attitude Control and Task Execution for a Solar-Powered Spacecraft B.A. Kristiansen, J.T. Gravdahl, S. Gros, T.A. Johansen ...flere forfattere IEEE Transactions on Control Systems Technology 2024
Probabilistic Forecasting-Based Stochastic Nonlinear Model Predictive Control for Power Systems with Intermittent Renewables and Energy Storage K.T. Hoang, C.A. Thilker, B.R. Knudsen, L. Imsland ...flere forfattere IEEE Transactions on Power Systems 2024
MTAD: Multiobjective Transformer Network for Unsupervised Multisensor Anomaly Detection M.A. Belay, A. Rasheed, P.S. Rossi ...flere forfattere IEEE Sensors Journal 2024
Integrated charging scheduling and operational control for an electric bus network R. Lacombe, N. Murgovski, S. Gros, B. Kulcsar ...flere forfattere Transportation Research Part E: Logistics and Transportation Review 2024
Physics-Informed Neural Networks with skip connections for modeling and control of gas-lifted oil wells J.E. Kittelsen, E.A. Antonelo, E. Camponogara, L. Imsland ...flere forfattere Applied Soft Computing 2024
Anomaly detection in multivariate time series of drilling data M.C. Altindal, P. Nivlet, M. Tabib, A. Rasheed, T.G. Kristiansen, R. Khosravanian ...flere forfattere Geoenergy Science and Engineering 2024
Experimental assessment of a JANUS-based consensus protocol E. Wengle, Erstorp E. Strandell, V. Lidstrom, D. Varagnolo, H. Dong ...flere forfattere Computer Networks 2024
Comparison of time-invariant and adaptive linear grey-box models for model predictive control of residential buildings X. Yu, Z. Ren, P. Liu, L. Imsland, L. Georges ...flere forfattere Building and Environment 2024
Personalized dynamic pricing policy for electric vehicles: Reinforcement learning approach S. Bae, B. Kulcsar, S. Gros ...flere forfattere Transportation Research Part C: Emerging Technologies 2024
Enhancing elasticity models with deep learning: A novel corrective source term approach for accurate predictions S. Sorbo, S.S. Blakseth, A. Rasheed, T. Kvamsdal, O. San ...flere forfattere Applied Soft Computing 2024
Digital Twins in intensive aquaculture — Challenges, opportunities and future prospects M. Fore, M.O. Alver, J.A. Alfredsen, A. Rasheed, T. Hukkelas, H.V. Bjelland, B. Su, S.J. Ohrem, E. Kelasidi, T. Norton, ...flere forfattere Computers and Electronics in Agriculture 2024
PoroTwin: A Digital Twin for a FluidFlower Rig E. Keilegavlen, E. Fonn, K. Johannessen, K. Eikehaug, J.W. Both, M.A. Ferno, T. Kvamsdal, A. Rasheed, J.M. Nordbotten ...flere forfattere Transport in Porous Media 2024
Lyapunov-based robust optimal control for time-delay systems with application in milling process A.B. Kordabad, S. Gros ...flere forfattere International Journal of Dynamics and Control 2024
Neural networks informed by physics for modeling mass flow rate in a production wellbore L.F. Nazari, E. Camponogara, L. Imsland, L.O. Seman ...flere forfattere Engineering Applications of Artificial Intelligence 2024
Equivalence of Optimality Criteria for Markov Decision Process and Model Predictive Control A.B. Kordabad, M. Zanon, S. Gros ...flere forfattere IEEE Transactions on Automatic Control 2024
Modeling, Analysis and Optimization of Multirotor Power Consumption F. Matras, F.X.N. Arsandoy, M.D. Pedersen ...flere forfattere 10th 2024 International Conference on Control, Decision and Information Technologies, CoDIT 2024 2024
Publikasjonsdata lastet ned ukentlig fra Scopus-API via  api.elsevier.com og www.scopus.com.