course-details-portlet

IP505245

Applied AI and Control

Choose study year

This course is no longer taught and is only available for examination.

Credits 7.5
Level Second degree level
Course start Spring
Duration 1 semester
Language of instruction English
Examination arrangement Aggregate score

About

About the course

Course content

The course is open for the students who are interested in artificial intelligence (AI) and willing to apply AI to practical applications. Focus will be on principles and implementation of AI methods for marine engineering. Throughout the course, students will gain the knowledge of concept, methodology and experiments from examples of real projects in marine domain. The course content are as follows:

  • AI introduction
  • Data collection, analysis and purification
  • AI and control methods
    • supervised learning
    • unsupervised learning
    • reinforcement learning
    • deep learning…
  • AI in different applications
    • Ship motion prediction
    • Engine fault diagnosis and prognosis
    • ANN-based controller for ship docking
    • Thruster fault detection and isolation
    • Deep reinforcement learning for COLREgs-compliant maneuvering
    • Sea state estimation…

Learning outcome

The students are expected to:

  • Have a good understanding of AI methods and their pros and cons;
  • Have knowledge of challenges in marine applications;
  • Know how to deal with data, formulate the problem, simplify model complicity, and select AI methods;
  • Be able to design and implement their own AI algorithms for real applications.

Learning methods and activities

Lectures, exercises and examples from real applications will be provided in the course. There will be individual mandatory assignments and exam project. 75% of the mandatory assignments have to be approved before admission to examination.

Compulsory assignments

  • Individual Mandatory Assignments

Further on evaluation

Final project 60% + oral exam 40%.

Resit exam can be carried out for the individual partial assessment and is offered the following semester.

You are given the opportunity to complain about partial assessments in this subject before all partial assessments have been completed.

Specific conditions

Admission to a programme of study is required:
Naval Architecture (850MD)
Naval Architecture (850ME)
Product and System Engineering (840MD)
Product and Systems Design (845ME)

Required previous knowledge

None.

Course materials

  • Jackson, Philip C. Introduction to artificial intelligence. Courier Dover Publications, 2019.
  • Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.
  • Sutton, Richard S., Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
  • A Beginner's Guide to Deep Reinforcement Learning, https://pathmind.com/wiki/deep-reinforcement-learning

Subject areas

  • Computer and Information Science
  • Computer Science
  • Marine Technology

Contact information

Course coordinator

Lecturers

Department with academic responsibility

Department of Ocean Operations and Civil Engineering