Archive - Nanomechanical Lab
Seasonal greetings from NML
Seasonal greetings from NML
Verner's Work Published in "Advanced Functional Materials"
Verner's Work Published in "Advanced Functional Materials"
Magnetically Enhanced Mechanical Stability and Super‐Size Effects in Self‐Assembled Superstructures of Nanocubes
Artificial materials from the self‐assembly of magnetic nanoparticles exhibit extraordinary collective properties; however, to date, the contribution of nanoscale magnetism to the mechanical properties of this class of materials is overlooked. Here, through a combination of Monte Carlo simulations and experimental magnetic measurements, this contribution is shown to be important in self‐assembled superstructures of magnetite nanocubes. By simulating the relaxation of interacting macrospins in the superstructure systems, the relationship between nanoscale magnetism, nanoparticle arrangement, superstructure size, and mechanical stability is established. For all considered systems, a significant enhancement in cohesive energy per nanocube (up to 45%), and thus in mechanical stability, is uncovered from the consideration of magnetism. Magnetic measurements fully support the simulations and confirm the strongly interacting character of the nanocube assembly. The studies also reveal a novel super‐size effect, whereby mechanically destabilization occurs through a decrease in cohesive energy per nanocube as the overall size (number of particles) of the system decreases. The discovery of this effect opens up new possibilities in size‐controlled tuning of superstructure properties, thus contributing to the design of next‐generation self‐assembled materials with simultaneous enhancement of magnetic and mechanical properties.
"Chemistry World News" about our Work
"Chemistry World News" about our Work
Chemistry World has a news about our Materials Horizons paper:
Continuous ethanol release at ice–solid interfaces keeps ice at bay for nearly two years
Fish-scale enabled sequential rupture for lowering ice adhesion
Fish-scale enabled sequential rupture for lowering ice adhesion
New article by Dr. Senbo Xiao
Enabling sequential rupture for lowering atomistic ice adhesion
Nanoscale, 2019, 11, 16262-16269
We have tailored ice rupture mode for lowering ice adhesion at the ice-solid interface by designing a fish-scale-like icephobic surface prototype The novel surface has an intrinsically low atomistic adhesion strength compared to other reported approaches. The study results provide theoretical references for relevant experiments and could inspire new icephobic surfaces and coatings. The concept proposed in our study can also apply to other interface mechanics researches.
Transport of Janus nanoparticles in confined channels
Transport of Janus nanoparticles in confined channels
New article in Environmental Science Nano
Janus nanoparticles (JNPs) have drawn significant attention due to their unique surface with dual character. The transportation of two-phase fluids with JNPs in an ultra-confined channel was studied by molecular dynamics (MD) simulations. The results indicated that the fluid displacement was hindered by JNPs, which was significantly dependent on the concentration of the NPs self-assembled at the fluid interface; compared to the NPs with uniform surface properties, the determining migration states for JNPs that influenced the displacement process were self-assembled at the fluid interface and aggregated in the three-phase contact region; this modified the interfacial tension and the three-phase contact angle. These key migration states were validated by the potential of the mean force of JNPs transporting from water to the oil phase. The capillary pressure calculated by the local pressure distribution was found to be the key factor driving the displacement process of the nanofluids with JNPs.
Liquid Layer Generators for Excellent Icephobicity at Extremely Low Temperatures
Liquid Layer Generators for Excellent Icephobicity at Extremely Low Temperatures
Promising progress in the field of icephobicity has been made in the recent years. However, a majority of the reported icephobic surfaces rely on static mechanisms, and they maintain low ice adhesion on surfaces at extreme temperatures (as low as −60 °C), which is highly challenging. Dynamic anti-icing surfaces, which can melt ice or change the ice–substrate interfaces from the solid to liquid phase after the formation of ice, serve as a viable alternative. In this study, liquid layer generators (LLGs), which can release ethanol to the ice–solid interface and convert the ice–substrate contact from the solid–solid mode to the solid–liquid–solid mode, were introduced. Excellent icephobicity on surfaces with an ethanol lubricating layer was found to withstand extremely low temperatures (−60 °C), which was proven by both molecular dynamics simulations and experiments. Two prototypes of LLGs, one by packing ethanol inside and the other by storing replenishable ethanol below the substrate, were fabricated. These LLGs could constantly release ethanol for a maximum of 593 days without source replenishment. Both these prototypes exhibited super-low ice adhesion strengths of 1.0–4.6 kPa and 2.2–2.8 kPa at −18 °C. For select samples, by introducing an interfacial ethanol layer, the ice adhesion strength on the same surfaces decreased in an unprecedented manner from 709.2–760.9 kPa to 22.1–25.2 kPa at a low temperature of −60 °C.
Hydrogen-Informed Gurson Model Proposed
Hydrogen-Informed Gurson Model Proposed
Hydrogen-microvoid interactions were studied via unit cell analyses with different hydrogen concentrations. The absolute failure strain decreases with hydrogen concentration, but the failure loci were found to follow the same trend dependent only on stress triaxiality, in other words, the effects of geometric constraint and hydrogen on failure are decoupled. Guided by the decoupling principle, a hydrogen informed Gurson model is proposed. This model is the first practical hydrogen embrittlement simulation tool based on the hydrogen enhanced localized plasticity (HELP) mechanism. It introduces only one additional hydrogen related parameter into the Gurson model and is able to capture hydrogen enhanced internal necking failure of microvoids with accuracy; its parameter calibration procedure is straightforward and cost efficient for engineering purpose.
Ice Type Strongly Affects its Adhesion to a Solid
Ice Type Strongly Affects its Adhesion to a Solid
In a recent paper published at AIP Advances, for the first time we clearly demonstrated that the ice type itself has a strong influence on its adhesion to a solid surface.
International Symposium on Materials for Anti-Icing - very successful
International Symposium on Materials for Anti-Icing - very successful
The NML successfully organized the 1st International Symposium on Materials for Anti-icing! International experts from USA, Canada and Europe, researchers and students from NTNU and NML, together with industrial partners from more than 8 Norwegian and Scandinavia anti-icing relevant companies engaged in very lively discussions and debates about the state-of-the-art as well as future perspectives of anti-icing materials during the 2 days symposium.
Understanding the role of hollow sub-surface structures in reducing ice adhesion strength
Understanding the role of hollow sub-surface structures in reducing ice adhesion strength
In our previous studies, incorporation of hollow sub-surface structures which act as macro-scale crack initiators has been shown to drastically lower the ice adhesion on PDMS surfaces. In this study, the effects of hollow sub-surface structure geometry, such as the heights, shapes, and distributions, as well as the directions of the applied shear force, are experimentally investigated. Our results show that the number of potential macro-scale crack initiation sites dictates ice adhesion strength. The directions of the applied shear force also influence the ice adhesion strength when the potential crack length is dependent on the applied shear force direction. The inter-locking effect between ice and the coating, caused by the pre-deformation, needs to be considered if one of the dimensions of the hollow sub-surface structures approaches the millimeter scale. These results improve the understanding of the role of hollow sub-surface structures in reducing ice adhesion, providing new insights into the design principles for multi-scale crack initiator-promoted icephobic surfaces.
Seasonal greetings from NML
Seasonal greetings from NML
Phase transition enabled durable anti-icing surfaces and its DIY design
Phase transition enabled durable anti-icing surfaces and its DIY design
Chemical Engineering Journal, 360 (2019) 243-249
Anti-icing surfaces are crucial to all cold-condition applications, ranging from nano- to macro scales. The pitcher-plants-inspired slippery liquid-infused porous surfaces (SLIPS) show positive effects in lowering ice adhesion strength. However, the longevity and durability of SLIPS applied for anti-icing purpose are of great challenge. Hereby we propose to use phase transformable oil lubricant in the design of SLIPS to overcome this tough barrier. The underlying mechanism relies on the physical property of lubricants that enables the transformation to solid state before water freezing. Peanut oil infused porous PDMS substrates show low ice adhesion strength (4.45 ⁓ 22.43kPa) as well as excellent durability. For selected samples, low ice adhesion strength around ⁓16kPa maintains after 30 icing/de-icing. Phase transformable slippery liquid infused porous surfaces (PTSLIPS) also suit to various substrates regardless of hydrophobic or hydrophilic materials, wide pore size distributions and diverse pore morphologies. We show the possibility of creating anti-icing surfaces by Do-It-Yourself (DIY) with porous materials (wipers, foams and paper) that can be found easily from household garbage and lab supplies. The results of this work motivates designing numerous anti-icing surfaces from various substrates. The idea of phase transition oil is also promising in other fields of SLIPS, like heat transmission, water collection, cell growth, and so on.
T-stress effect on brittle-to-ductile transition by dislocation mobility
T-stress effect on brittle-to-ductile transition by dislocation mobility
The brittle-to-ductile transition (BDT) is not an intrinsic phenomenon of material, and depends not only on the strain rate but also on the constraint at crack tip. By employing a dislocation mobility based continuum model, we found that the change of the stress distribution ahead of crack tip due to the T-stress dictates the fracture toughness in the transition region; lower constraint leads to a higher fracture toughness, a smoother transition curve and a lower critical transition temperature. A quantitative relation between fracture toughness and T-stress is established such that the transition curve with constraint can be estimated from a reference BDT curve.
How can nanofluids enhance oil recovery
How can nanofluids enhance oil recovery
Fluids flow in porous media is ubiquitous and has important application in numerous fields, such as groundwater remediation, oil recovery, water purification, CO2 utilization, etc. In the paper, the oil field is taken as an example to study the fluid flow properties in porous media. Given that a reservoir with ultra-low permeability, abundances of nanopores interconnect large pores and control the permeability of reservoirs, and about 80% of them ranging from 0.5 to 100 nm in diameter (4500-5600 meter in depth). The fluids in confined nanopores will behave quite differently from the bulk ones, however, it is very challenging to control the thickness of oil film, the nanoscale diameter of porous media, pressure and temperature distribution by experiments, etc. Understanding dynamics of fluids flow in confinement, especially nanopores in reservoirs, is crucial for the design of flooding fluids. In this study, all-atom models of various oil components and modified silica NPs were put into MD simulations for investigating their influences on the displacement of fluid flow into silica nanopore. Via analyses of the relationship of displacement length (l) and time (t), dynamic water-oil displacement process, and pressure difference along capillary induced by silica NPs, a comprehensive mechanism of NP effects on displacement is proposed. Our findings shed light on resolving nanoscale water-oil displacement mechanism influenced by NPs in sandstone reservoirs, which is significant to design targeted NPs for applications.
New methodology for creating nanoporous materials
New methodology for creating nanoporous materials
Focused ion beam milling of self-assembled magnetic superstructures: an approach to fabricate nanoporous materials with tunable porosity
Materials Horizons, 10.1039/C8MH01112E
We introduce an unprecedented route to fabricate nanoporous materials to circumvent the drawbacks in existing approaches (dealloying and template-mediated methods). We utilize focused ion beam milling of self-assembled magnetic superstructures as a novel approach to fabricate nanoporous materials with the possibility to tune the porosity. We find a fundamentally different behavior when superstructured materials consisting of ordered nanoparticles, as opposed to their bulk counterpart, are subjected to ion beam milling. Nanoparticles in the superstructures are not only subjected to milling, but also melting, causing particles to merge into each other thus forming a porous network. We find that the mean pore sizes increase linearly with increasing ion beam voltage, and also increase with decreasing packing factor within the superstructure which was in this study tuned by the shape of the nanoparticles in question (spherical versus cubic). Hence, our approach offers three-dimensional flexibility in terms of nanoparticle shape and material, in addition to the easily tunable ion beam voltage, enabling the fabrication of nanoporous materials with the possibility to both choose backbone material and control the porosity.
Atomistic Dewetting Mechanics revealed by molecular dynamics
Atomistic Dewetting Mechanics revealed by molecular dynamics
Atomistic Dewetting Mechanics at Wenzel and Monostable Cassie-Baxter States
Physical Chemistry Chemical Physics -- PCCP, 2018, 20: 24759-24767
Understanding water wettability is essential for creating surfaces with varied hydrophobicity for practical applications. Two wetting states, namely the Wenzel and the Cassie-Baxter states, of surfaces have been classified for more than half a century. Their static force balances at the three phase contact line are analytically explained by the famous Young’s equation. In contrast, the water dewetting mechanics is rarely touched, especially on atomistic scale that applies to surfaces with nanoscale topography, for instance Lotus leaves. Our work focused on atomistic water dewetting at two wetting states, by employing atomistic modeling and molecular dynamics simulations. We first realized the two wetting states, and applied force to detach water droplets from nanopillars and flat substrates, aiming for probing the nanoscale dewetting mechanics. Our results revealed the intermediate states in non-equilibrium dewetting, and quantified water adhesion stress in the dewetting process at two wetting states that was not covered in former studies.
Measuring electrical resistance of spherical thin films by van der Pauw methods
Measuring electrical resistance of spherical thin films by van der Pauw methods
Resistance analysis of spherical metal thin films combining van der Pauw and electromechanical nanoindentation methods
The classic van der Pauw method is extended to measure the electrical resistance and determine the resistivity of spherical thin metal films coated on the polymer sphere. The resistivity is used to interpret resistance contributions in single particle electromechanical nanoindentation measurements, which simulate the compression particles undergo in application. The resistivity was found to be coating thickness dependent for thin films in the range 60-270 nm. Estimation of the resistance of the metal shell using the measured resistivity did not account for the total resistance measured in electromechanical nanoindentation. We therefore deduce a significant contribution of contact resistance at the interfaces of the particle. The contact resistance is both coating thickness and particle deformation dependent.
Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces
Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces
One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS)
ACS Omega, 2018, 3, 1013910144
The conventional slippery liquid-infused porous surfaces (SLIPS) possess low ice adhesion strength thanks to the existence of lubricant on the interface. However, the SLIPS are still far from being applicable in real environments owing to their low durability. Herein, inspired by the functionality of amphibians’ skin, we used one-step method to fabricate a series of skin-like SLIPS, which can regenerate lubricant on the surfaces after 15 wiping/regeneration tests. We studied the behaviour of regenerable lubricant, and proposed mechanism for that. Thanks to the regenerability of the surface lubricant, the skin-like SLIPS presented durable icephobicity, showing a long-term low ice adhesion strength below 70 kPa, which is only 43% of 160 kPa, that for the pristine polydimethylsiloxane (PDMS, Sylgard 184), after 15 icing/deicing cycles.
NTNU Fabricated Anti-icing Coating Materials Reached Ice Adhesion Lower than 1 kPa
NTNU Fabricated Anti-icing Coating Materials Reached Ice Adhesion Lower than 1 kPa
PDMS sponge structures-based coatings fabricated by NTNU Nanomechanical Lab reached a record super-low ice adhesion strength below 1 kPa! Details can be found in a new paper published in the June issue of Soft Matter.
Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion
Joint article with Kyoto University by PhD student Molly Bazilchuk
Joint article with Kyoto University by PhD student Molly Bazilchuk
Deformation and Fracture of Micron‐Sized Metal‐Coated Polymer Spheres: An In Situ Study
Advanced Engineering Materials, DOI: 10.1002/adem.201800049
Review article on Water Condensation and CO2 Condensation by PhD candidate Ingrid Snustad
Review article on Water Condensation and CO2 Condensation by PhD candidate Ingrid Snustad
A Review on Wetting and Water Condensation - Perspectives for CO2 Condensation
Advances in Colloid and Interface Science, DOI: 10.1016/j.cis.2018.03.008
Liquefaction of vapor is a necessary, but energy intensive step in several important process industries. This review identifies possible materials and surface structures for promoting dropwise condensation, known to increase efficiency of condensation heat transfer. Research on superhydrophobic and superomniphobic surfaces promoting dropwise condensation constitutes the basis of the review. In extension of this, knowledge is extrapolated to condensation of CO2. Global emissions of CO2 need to be minimized in order to reduce global warming, and liquefaction of CO2 is a necessary step in some carbon capture, transport and storage (CCS) technologies. The review is divided into three main parts: 1) An overview of recent research on superhydrophobicity and promotion of dropwise condensation of water, 2) An overview of recent research on superomniphobicity and dropwise condensation of low surface tension substances, and 3) Suggested materials and surface structures for dropwise CO2 condensation based on the two first parts.
New article in ACS Applied Materials & Interfaces by PhD candidatet Yizhi Zhuo
New article in ACS Applied Materials & Interfaces by PhD candidatet Yizhi Zhuo
Enhancing mechanical durability of icephobic surfaces by introducing autonomous self-healing function
ACS Applied Materials & Interfaces, DOI: 10.1021/acsami.8b01866
Icephobic surfaces are crucial to all cold-condition applications, ranging from nano to macro scales. The study presented in this manuscript focuses on enabling new functionality, namely self-healing, in passive icephobic surfaces. The aim of the work is to improve the common durability issue of all the state-of-the-art icephobic surfaces. Here, we designed and fabricated a novel icephobic material by integrating interpenetrating polymer network (IPN) into autonomous self-healing elastomer. The material showed great potentials in anti-icing applications with an ultralow ice adhesion and long-term durability. Most importantly, the material was able to demonstrate self-healing from mechanical damages in a sufficiently short time, which shed light on the longevity of icephobic surface in practical applications. Moreover, we studied the creep behaviours of the elastomer that were absent in most relevant studies on self-healing materials. We also provided molecular mechanisms of the self-healing and creep resistance of the IPN in the manuscript.
New article in Fatigue & Fracture of Engineering Materials & Structures by PhD candidate Shengwen Tu
New article in Fatigue & Fracture of Engineering Materials & Structures by PhD candidate Shengwen Tu
Study of low-temperature effect on the fracture locus of a 420-MPa structural steel with the edge tracing method
Fatigue & Fracture of Engineering Materials & Structures, DOI 10.1111/ffe.12803
Quasi-static tensile tests with smooth round bar and axisymmetric notched tensile specimens have been performed to study the low-temperature effect on the fracture locus of a 420-MPa structural steel. Combined with a digital high-speed camera and a 2-plane mirror system, specimen deformation was recorded in 2 orthogonal planes. Pictures taken were then analysed with the edge tracing method to calculate the minimum cross-section diameter reduction of the necked/notched specimen. Obvious temperature effect was observed on the load-strain curves for smooth and notched specimens. Both the strength and strain hardening characterized by the strain at maximum load increase with temperature decrease down to −60°C. Somewhat unexpected, the fracture strains (ductility) of both smooth and notched specimens at temperatures down to −60°C do not deteriorate, compared with those at room temperature. Combined with numerical analyses, it shows that the effect of low temperatures (down to −60°C) on fracture locus is insignificant. These findings shed new light on material selection for Arctic operation.
New article on polycrystalline Molybdenum disulfide published in Nano Letters by Dr. Jianyang Wu
New article on polycrystalline Molybdenum disulfide published in Nano Letters by Dr. Jianyang Wu
Grain-size Controlled Mechanical Properties of Polycrystalline Monolayer MoS2
Nano Letters, DOI: 10.1021/acs.nanolett.7b05433
Large-area chemical-vapor-deposited monolayer MoS2 tends to be polycrystalline with intrinsic grain boundaries (GBs). Topological defects and grain size skillfully alter its physical properties in a variety of materials; however, the polycrystallinity and its role played in the mechanical performance of the emerging single-layer MoS2 remain largely unknown. Using large-scale atomistic simulations, GB structures and mechanical characteristics of realistic single-layered polycrystalline MoS2 of varying grain size prepared by confinement-quenched method are investigated. Depending on misorientation angle, structural energetics of polar-GBs in polycrystals favor diverse dislocation cores, consistent with experimental observations. Polycrystals exhibit grain size dependent thermally-induced global out-of-plane deformation, although defective GBs in MoS2 show planar structures that are in contrast to the graphene. Tensile tests show that presence of cohesive GBs pronouncedly deteriorates the in-plane mechanical properties of MoS2. Both stiffness and strength follow an inverse pseudo Hall-Petch relation to grain size, which is shown to be governed by the weakest link mechanism. Under uniaxial tension, transgranular crack propagates with small deflection, whereas upon biaxial stretching the crack kinkily grows with large deflection. These findings shed new light in GB-based engineering and control of mechanical properties of MoS2 crystals towards real-world applications in flexible electronics and nanoelectromechanical systems.
New article in Acta Materialia by Dr. Kai Zhao
New article in Acta Materialia by Dr. Kai Zhao
Effect of hydrogen on the collective behavior of dislocations in the case of nanoindentation
Acta Materialia, DOI: 10.1016/j.actamat.2018.01.053
Hydrogen embrittlement of metallic materials is far from being understood. In this work, we develop a hydrogen-informed expanding cavity model for the first time to describe the dynamic evolution of load-displacement curve obtained from nanoindentation tests. What we want to specially mention is that the proposed model takes into account the kinetic diffusion of H atoms towards the plastic region and the H-induced decrease of the formation energy of dislocations. This new model allows us to make comparison with atomistic simulations and nanoindentation experiments, and bridge the gap between the knowledge obtained from nano and micro-scales.
New article in Physical Chemistry Chemical Physics by PhD student Xiao WANG
New article in Physical Chemistry Chemical Physics by PhD student Xiao WANG
Atomistic Insights into the Nanofluid Transport through Ultra-confined Capillary
Physical Chemistry Chemical Physics, DOI: 10.1039/C7CP08140E
The nanofluids or nanoparticles (NPs) transport in confined channel is of great importance for many biological and industrial processes. In this study, molecular dynamics simulation has been employed to investigate spontaneous two-phase displacement process in ultra-confined capillary controlled by surface wettability of NPs. The results clearly show that the presence of NPs modulates the fluid-fluid meniscus and hinders displacement process compared with NP-free case. From the perspective of motion behavior, hydrophilic NPs disperse in water phase or adsorb on the capillary, while hydrophobic and mixed-wet NPs are mainly distributed in the fluid phase. The NPs dispersed into fluids tend to increase the viscosity of fluids, while the adsorbed NPs contribute to wettability alteration of solid capillary. Via capillary number calculation, it is uncovered that the viscosity increase of fluids is responsible for hindered spontaneous displacement process by hydrophobic and mixed NPs. Wettability alteration of capillary induced by adsorbed NPs is dominating the enhanced displacement in the case of hydrophilic NPs. Our findings provide the guidance to modify the rate of capillary filling and reveal microscopic mechanism of transporting NPs into porous media, which is significant to the design of NPs for target applications.
New article in International Journal of Mechanical Sciences by PhD candidate Shengwen Tu
New article in International Journal of Mechanical Sciences by PhD candidate Shengwen Tu
A method for determining material’s equivalent stress-strain curve with any axisymmetric notched tensile specimens without Bridgman correction.
International Journal of Mechanical Sciences, 2018, 135, 656-667
Large deformation analyses of problems such as plastic forming, ductile fracture with finite element method need a full range of material's equivalent stress-strain curve or flow stress-strain curve. The equivalent stress-strain curve determined from the smooth round bar specimen should be corrected after diffuse necking, since tri-axial stress state occurs in the neck. The well-known Bridgman correction method is a candidate, however, it is not accurate as the strain increases. Furthermore, it is impossible to measure the equivalent stress-strain curve of each individual material zone in a weldment with cross weld tensile tests. To cope with these challenges, a correction function and an associated test procedure are proposed in this study. With the proposed procedure, the true stress-strain curve from any axisymmetric notched tensile specimen can be converted to the material's equivalent stress-strain curve accurately and no Bridgman correction is needed. The proposed procedure can be applied to both perfectly plastic and strain hardening materials. The equivalent stress-strain curve of each individual material zone in a weldment can also be measured with the proposed procedure.
New findings in organic semiconducting nanobelts by Dr. Mao Wang
New findings in organic semiconducting nanobelts by Dr. Mao Wang
Raman Antenna Effect from Exciton-Phonon Coupling in Organic Semiconducting Nanobelts
Nanoscale, 2017, 9: 19328-19336
In this manuscript, we present the Raman antenna effect from organic semiconducting nanobelts of 6,13-dichloropentacene (DCP). Under resonant excitation, DCP nanobelts act like a nearly perfect dipole antenna, and all Raman signals from the intramolecular phonons of DCP exhibit the same angle-dependent behaviour. It is the first time that Raman antenna effect in organic semiconducting materials is reported. The underlying mechanism (exciton-phonon coupling) is intrinsically different from that in inorganic semiconducting materials and carbon nanotube (geometry effect). The Raman antenna phenomenon is attributed to the intramolecular exciton‒phonon coupling, which dominates over the intrinsic Raman selection rule of DCP molecules and leads to all the Raman modes possessing the same angular dependence behaviour. The formation of intermolecular exciton in DCP nanobelts further results in maximum Raman emission perpendicular to the nanobelt’s long-axis. Besides, the Raman antenna effect also amplifies the anisotropy of Raman scattering of the one-dimensional DCP nanobelts. These findings give new physical insights into the light interaction with organic semiconductors and enrich our knowledge on the exciton‒phonon coupling and its effects on the optical properties of organic semiconductors.
New article in Engineering Fracture Mechanics by PhD candidate Shengwen Tu
New article in Engineering Fracture Mechanics by PhD candidate Shengwen Tu
Determining critical CTOA from energy-load curves with DWTT specimen
Engineering Fracture Mechanics, 2017, 186: 47-58
Running ductile fracture is one of the most catastrophic accidents of pipelines for natural gas transportation. Crack arrest toughness is important for preventing crack extension to a long distance along pipeline. Critical crack tip opening angle (C
Super-Low Ice Adhesion Surfaces-Designed and Fabricated by NML
Super-Low Ice Adhesion Surfaces-Designed and Fabricated by NML
Research news Controlling problem ice — by cracking it
Research news Stopping problem ice -- by cracking it
Research news Får problematisk is til å sprekke opp
NTNU Nanomechanical Lab has recently reached a milestone in developing anti-icing technology in the FRINATEK project SLICE!
By introducing a novel concept, we reached for the first time for pure PDMS materials the super-low ice adhesion 5.7 kPa! The ice adhesion strength for common outdoor steel or aluminium surfaces is around 600-1000 kPa. A new paper published today at Soft Matter: Multiscale crack initiator promoted super-low ice adhesion surfaces.
New article in Journal of Physical Chemistry C by PhD candidate Mao Wang
New article in Journal of Physical Chemistry C by PhD candidate Mao Wang
Angle-Dependent Photoluminescence Spectroscopy of Solution-Processed Organic Semiconducting Nanobelts
Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.7b02958
We present the anisotropic optical properties of 1D nanobelts of 6,13-dichloropentacene (DCP). High-quality large-area well-aligned DCP nanobelt arrays were readily obtained through self-assembly utilizing the strong π-π interaction between the molecular cores by simple solution processing method. The comparison of absorption and emission spectra of DCP in solution and DCP nanobelt indicated the co-existence of intramolecular and intermolecular excitons in the aggregation state of DCP. The photoluminescence (PL) from individual DCP nanobelt exhibited strong anisotropic property and the measured polarization ratio is on average 0.92±0.05, superior to that of the prior-art organic semiconductors. Beyond that, the angle-dependent photoluminescence clearly verified that the emission arose only from the relaxation of intramolecular exciton in spite of the strong electronic coupling along the π-π stacking direction. We believe these findings will enrich our knowledge of the exciton behaviour in 1D π-π stacking organic semiconductors and demonstrate DCP’s great potential for low-cost large-scale organic optoelectronic.
A new method to determine the Poisson's ratio of viscoelastic polymer microparticles - a publication of Haiyang YU
A new method to determine the Poisson's ratio of viscoelastic polymer microparticles - a publication of Haiyang YU
A ‘magic’ notched tensile specimen that makes the Bridgman’s correction redundant - a new paper by PhD student Shengwen TU
A ‘magic’ notched tensile specimen that makes the Bridgman’s correction redundant - a new paper by PhD student Shengwen TU
A novel tensile testing method is proposed, and a ‘magic’ specimen with a special notch geometry has been identified. By using this special notched tensile specimen, material’s flow stress-strain curve can be DIRECTLY obtained from the recorded load versus diameter reduction curve and no Bridgman correction is needed.
New article in Energies by PhD candidate Xiao Wang
New article in Energies by PhD candidate Xiao Wang
Effect of Nanoparticles on Spontaneous Imbibition of Water into Ultraconfined Reservoir Capillary by Molecular Dynamics Simulation
Energies, 2017, 10(4), 506; doi:10.3390/en10040506
Imbibition in porous media is ubiquitous and has important application in oil fields. Understanding the fundamental imbibition mechanism for nanofluids is very crucial to enhanced oil recovery (EOR) by nanoparticles. As it is difficult to disentangle the specific role of different interfaces in imbibition process by experimental trials, atomistic and molecular simulations hold the key to explore the migration mechanism of nanofluids into porous media and identify the dominating driving force for nanoparticles application in EOR.
In this study, we employ molecular dynamics simulations to study the spontaneous water imbibition into ultraconfined reservoir channels influenced by nanoparticles. By combining the dynamic process of imbibition, the water contact angle in capillary and the relationship of displacement (l) and time (t), a competitive mechanism of nanoparticle effects and fluid properties on spontaneous imbibition is proposed. Our findings provide new physical insights into the roles of nanoparticles in fluid imbibition, which is the core process in a number of technologies, including enhanced oil recovery.
New article in Physical Chemistry Chemical Physics by PhD candidate Bjørn Strøm
New article in Physical Chemistry Chemical Physics by PhD candidate Bjørn Strøm
Size and shape effects on thermodynamic properties of nanoscale volumes of water
Physical Chemistry Chemical Physics, DOI: 10.1039/C7CP00874K
Small systems are known to deviate from the classical thermodynamic description, among other things due to their large surface area to volume ratio compared to corresponding big systems. As a consequence, extensive thermodynamic properties are no longer proportional to the volume, but are instead higher order functions of size and shape. We investigate such functions for second moments of probability distributions of fluctuating properties in the grand-canonical ensemble, focusing specifically on the volume and surface terms as proposed by Hadwiger [Hadwiger, Springer, 1957]. We resolve the shape dependence of the surface term and show, using Hill’s nanothermodynamics [Hill, J. Chem. Phys., 1962, 36, 3182], that the surface satisfies the thermodynamics of a flat surface as described by Gibbs [Gibbs, Ox Bow Press, 1993, Vol. 1]. The Small System Method (SSM), first derived by Schnell et al. [Schnell et al., J. Phys. Chem. B, 2011, 115, 10911], is extended and used to analyze simulation data on small systems of water. We simulate water as an example to illustrate the method, using the TIP4P/2005 and other models, and compute the isothermal compressibility and thermodynamic factor. We are able to retrieve the experimental value of the bulk phase compressibility within 2 %, and show that the compressibility of nanosized volumes increases by up to a factor of two as the number of molecules in the volume decreases. The value for a tetrahedron, cube, sphere, polygon, etc. can be predicted from the same scaling law, as long as second order effects (nook and corner effects) are negligible. Lastly, we propose a general formula for finite reservoir correction to fluctuations in subvolumes.
New article in Journal of Eletronic Materials by Dr. Sigurd Pettersen
New article in Journal of Eletronic Materials by Dr. Sigurd Pettersen
Room-Temperature Curing and Grain Growth at High Humidity in Conductive Adhesives with Ultra-Low Silver Content
Journal of Electronic Materials, DOI: 10.1007/s11664-017-5376-1
Can Hydrogen Embrittlement of High Strength Steels Even Occur at Low Temperature? New published paper gave an answer!
Can Hydrogen Embrittlement of High Strength Steels Even Occur at Low Temperature? New published paper gave an answer!
New paper published at Materials Science & Engineering A.
Our recent results show that hydrogen embrittlement is present at sub-zero temperatures, causing an increase in fracture toughness reference temperature T0 and a small decrease in deformation capability. The relationship between the T0 and the impact toughness transition temperature T28J, which, in the case of ultra-high-strength steel, deviates from that observed for lower strength steels, is proposed to be affected by the hydrogen content.
Anti-Icing: What are the Common Room Temperature Characteristics of Low Ice Adhesion Surfaces?
Anti-Icing: What are the Common Room Temperature Characteristics of Low Ice Adhesion Surfaces?
New paper published in Scientific Reports.
Our results show that low ice adhesion strength does not correlate well with water contact angle and its variants, surface roughness and hardness. Low elastic modulus does not guarantee low ice adhesion, however, surfaces with low ice adhesion always show low elastic modulus. Low ice adhesion (below 60 kPa) of commercial surfaces uniquely associates with small water adhesion force.
New article in Journal of Applied Physics by Dr. Sigurd Pettersen
New article in Journal of Applied Physics by Dr. Sigurd Pettersen
Investigation of thermal transport in polymer composites with percolating networks of silver thin films by the flash diffusivity method
by Sigurd R. Pettersen, Shijo Nagao, Helge Kristiansen, Susanne Helland, John Njagi, Katsuaki Suganuma, Zhiliang Zhang, and Jianying He*
Journal of Applied Physics, 2017, 121, 025101
The flash diffusivity method/laser flash analysis (LFA) is one of the most popular methods for finding the thermal conductivity of a large range of materials, including polymer composites for thermal and electronic interconnects. With standardized, commercial instruments available, it has become common practice even in peer-reviewed journal publications to only state the instrument model and manufacturer, and then give the estimated thermal conductivity as an absolute value without discussing the intermediate factors. In this paper, we show that both the absolute values and temperature-dependent behavior of the specific heat capacity of polymer composite materials varies significantly with the three most common methods used to estimate this input factor for the LFA method, and that this further has a significant impact on the estimated thermal conductivity. We also give a systematic theoretical overview of the methods used in the manuscript, as this to our best knowledge has not before been published in one single paper. We expect that this paper can be of large value for researchers interested in investigating thermal properties of polymer composites, and as a general starting point for researchers interested in using the LFA method.
Seasonal greetings
Seasonal greetings
Joint publication with China University of Petroleum (East China) in Physical Chemistry Chemical Physics
Joint publication with China University of Petroleum (East China) in Physical Chemistry Chemical Physics
Molecular Dynamics Study of di-CF4 Based Reverse Micelle in Supercritical CO2
Physical Chemistry Chemical Physics, 2016
The reverse micelles (RMs) in supercritical CO2 (scCO2) are promising alternatives for organic solvents, especially for both polar and non-polar components are involved. Fluorinated surfactants, particularly the double-chain fluorocarbon surfactants, are appropriate to form well-structured RMs in scCO2. The mechanisms inherent to the self-assembly of the surfactants in scCO2 are still subject to discussion. In this study, molecular dynamics simulations were performed to investigate the self-aggregation behavior of di-CF4 based RM in scCO2 and a stable and spherical RM is formed. The dynamics process and the self-assembly structure in the RM reveal a three-step mechanism to form the RM, that is, small RMs, rod-like RMs and the fusion of rod-like RMs. The Hydrogen-bonds between headgroups and water molecules, and the salt-bridges linking Na+, headgroups and water molecules enhance the interfacial packing efficiency of the surfactant. The result shows the di-CF4 molecule has the high surfactant coverage at the RM interface, implying the high CO2-philicity. Ths mainly results from the bend of the short chain (C-COO-CH2-(CF2)3-CF3) due to the flexible carboxyl group. The microscopic insight provided in this study is helpful to understand the surfactant self-assembly phenomena and design new CO2-philic surfactants.
New article in RSC Advances by PhD candidate Yi Gong
New article in RSC Advances by PhD candidate Yi Gong
The behavior of hydrophobic-core/hydrophilic-shell structured microgels at an interface: from Mickering emulsion to colloidosomes with dual-level controlled permeability
RSC Advances, 2016, 6, 95067-95072
Colloidosomes have attracted great attention due to its special structure and broad applications, and the permeability is one of the key parameter of colloidosomes. In the manuscript, an effective and straightforward approach for fabricating novel colloidosomes from pH-responsive core-shell microgels is presented. One-pot surfactant-free synthesis of the microgels with hydrophobic core and hydrophilic shell is developed. The Model drug release results show that the permeability of colloidosomes can be coarsely controlled by pH and fine-tuned by the ratio of shell to core in microgels.
Compare to the works reported previously, the synthesis of microgels in one-pot process could avoid the preparation, isolation and purification of raw products, while microgels with well-defined core-shell structure are still obtained. Moreover, the core and shell of microgels can be tailor-designed by choosing different monomers; thus the method can be commonly used to integrate various functional materials into colloidosomes. The methodology revealed in the study not only provides a unique technique to control the permeability of colloidosomes but also opens a platform pathway to integrate multi-functionalities to the colloidosomes.
Delegation from Delft University of Technology to NTNU Nanomechanical Lab
Delegation from Delft University of Technology to NTNU Nanomechanical Lab
NML Group seminar at Lofoten
NML Group seminar at Lofoten
New article in Computational Materials Science by PhD candidate Kai Zhao
New article in Computational Materials Science by PhD candidate Kai Zhao
Ductile mechanisms of metals containing pre-existing nanovoids
Computational Materials Science, 2016, volume 125, page 36-50
The void growth in monocrystalline Cu and Fe are investigated by molecular dynamics simulations to reveal the ductile mechanisms based on dislocation emission and propagation. The results show that the void growth in Cu is governed by the collective interaction of stacking faults along four (111) planes. Three dominant mechanisms of void growth in Fe are identified: (i) for small voids, nucleation of twinning boundaries; (ii) for intermediate voids, emission of shear loops; (iii) for large voids, stacking faults nucleate at the void surface and then degenerate into shear loops. The slip-twinning transition rate of Fe at room temperature calculated according to Zerrili-Armstrong model is in the range measured by our atomistic simulations. Vacancy generation which promotes void growth results from the intersection of more than two stacking faults in Cu, while in Fe it is attributed to the jog dragging of screw dislocations. An analytical model based on nudged elastic band calculation is developed to include the strain rate dependence of the nanovoid-incorporated incipient yielding. This new model demonstrates that the critical radius of shear loop in Cu under a strain rate of 108 s-1 is on the order of Burgers vector. For both metals, the dislocation density has been calculated to elucidate the plastic hardening coupled with void growth. This work sheds new lights in exploring the atomistic origins of the void size and strain rate dependent mechanisms associated with dislocation activities close to void surface
New article in Engineering Fracture Mechanics by PhD candidate Haiyang Yu
New article in Engineering Fracture Mechanics by PhD candidate Haiyang Yu
Viscous regularization for cohesive zone modelling under constant displacement: an application to hydrogen embrittlement simulation
Engineering Fracture Mechanics, 2016, 166, 23-42
The convergence problem during the cohesive zone modelling of hydrogen embrittlement in constant displacement scenario is attributed to the numerical instability which is studied analytically in the present work. The property of numerical stability is directly associated with the number of solutions for the controlling equations from the failure initiation point. It is shown that all the cases with a non-unique solution are numerically unstable thereby having convergence problem. Linear elastic and elasto-plastic material models are considered in the derivation, and the convergence properties for both models are proved essentially the same. The viscous regularization proposed by Gao and Bower proves effective in solving the convergence problem with good accuracy under constant displacement, provided that the viscosity is small enough. This is further supported by a pipeline engineering case study where the viscosity regularized cohesive zone approach is applied to the hydrogen embrittlement simulation. The stabilizing mechanism of the viscous regularization is attributed to its capacity to enforce a single solution by modifying the controlling equations. The influence of viscous regularization on symmetry modelling is also discussed.
New article in Applied Physics Letters: Electrical four-point probing of spherical metallic thin films
New article in Applied Physics Letters: Electrical four-point probing of spherical metallic thin films
New article published in Applied Physics Letters. In this manuscript, we are presenting a novel method for performing four-point electrical measurements on spherical thin films with micron-scale diameters. Such measurements have not been reported previously, as four-point measurements are normally performed on flat surfaces and with complete symmetry in probe positions. The method takes advantage of recent advances in commercially available micro-robots, which allows the positioning of four separately controlled electrical probes on very fine structures. Using finite element models to obtain geometric corrections factors yields the opportunity to estimate the resistivity of materials and structures where symmetric probe positioning is difficult to achieve. By this method, we show that the intrinsic resistivities of spherical thin films are higher than that of bulk metal. The findings are of large significance to the electronic packaging industry, where cost-efficiency and getting large gain from the consumed amount of precious metals are of large importance.
New article in Nanoscale: Nanoscale Deicing by Molecular Dynamics Simulation
New article in Nanoscale: Nanoscale Deicing by Molecular Dynamics Simulation
Excessive icing is a general problem to human activities in low temperature environment. The aim of creating anti-icing materials, surfaces and applications rely on understanding the fundamental nanoscale ice adhesion mechanics. As increasing experimental trials on manufacturing anti-icing coatings have been carried out, theoretical knowledge on the atomistic determinants of ice adhesion is in urgent need. In this study, we employ all-atom modeling and molecular dynamics simulations to study ice adhesion, detaching and shearing on smooth silicon and graphene surfaces, aiming to decipher the basis of ice adhesion strength. We also study the mechanical effects of an aqueous water layer that sandwiched between ice and substrate, giving results to support previous experiments. Our results for the first time provide atomistic view on the key events of nanoscale deicing processes, and supply strong theoretical references for further anti-icing studies.
Verner Håkonsen winner of NTNU NanoLab Image contest 2016
Verner Håkonsen winner of NTNU NanoLab Image contest 2016
PhD candidate Verner Håkonsen has won the NTNU NanoLab Image contest 2016. We congratulate Verner!
Image description: Self-assembled magnetic nanocubes into superstructured tubes, which again have self-assembled into "leaf-like" micropatterns. Instrument used: Hitachi S5500 S(T)EM.
Molly Bazilchuk, Best Student Talk Award
Molly Bazilchuk, Best Student Talk Award
PhD candidate Molly Bazilchuk received the Best Student Talk Award from the 7th annual workshop of The Norwegian PhD Network on Nanotechnology for Microsystems. We congratulate Molly!
Electromechanical characterization of individual micron-sized metal coated polymer particles
Electromechanical characterization of individual micron-sized metal coated polymer particles
New paper published in Journal of Applied Physics. In the paper we present a method of simultaneous electrical resistance and compression measurements of single micron-size metal coated polymer particles. The method allows fundamental physical insight into the mechanisms of electrical resistance in the interconnect where such particles are applied.
Contact resistance and metallurgical connections between silver coated polymer particles in isotropic conductive adhesives
Contact resistance and metallurgical connections between silver coated polymer particles in isotropic conductive adhesives
Recently, there has been an increasing interest in silver thin film coated polymer spheres as conductive fillers in isotropic conductive adhesives (ICAs). Such ICAs yield resistivities similar to conventional silver flake based ICAs while requiring only a fraction of the silver content. In this work, effects of the nanostructure of silver thin films on inter-particle contact resistance were investigated. The electrical resistivity of ICAs with similar particle content was shown to decrease with increasing coating thickness. Scanning electron micrographs of ion milled cross-sections revealed that the silver coatings formed continuous metallurgical connections at the contacts between the filler particles after adhesive curing at 150 °C. The electrical resistivity decreased for all samples after environmental treatment for three weeks at 85 °C /85 % relative humidity. It was concluded that after the metallurgical connections formed, the bulk resistance of these ICAs were no longer dominated by the contact resistance, but by the geometry and nanostructure of the silver coatings. A figure of merit (FoM) was defined based on the ratio between bulk silver resistivity and the ICA resistivity, and this showed that although the resistivity was lowest in the ICAs containing most silver, the volume of silver was more effectively utilized in the ICAs with intermediate silver contents. This was attributed to a size effect due to smaller grains in the thickest coating.
CuO/Cu based superhydrophobic and self-cleaning surfaces
CuO/Cu based superhydrophobic and self-cleaning surfaces
CuO/Cu based superhydrophobic surfaces with ordered micro/nanostructures have been prepared via a solution-immersion process combining with photolithography and argon ion beam etching. CuO nanoneedles grow only inside microholes on copper substrate due to delaying effect of both residual photoresist and carbon layer produced during Ar etching. The hierarchical structures and surfaces show a water contact angle of 152⁰, a contact angle hysteresis of 3⁰, and a low water adhesion force of 15 μN, indicating a good superhydrophobicity. The obtained surfaces also keep itself clean from carbon black, chalk dust and water, enabling a great potential in self-cleaning and anti-fouling applications.
Joint publication with Brno University of Technology
Joint publication with Brno University of Technology
Multiaxial stress–strain response and displacive transformations in NiTi alloy from first principles
Abstract: Present ab initio study was focussed on a response of NiTi martensite to a superposition of shear and tensile or compressive stresses acting normally to the shear planes. The theoretically predicted base-centered orthorhombic (BCO) ground-state structure was found unstable under uniaxial compression and two transformations, one from orthorhombic to a monoclinic symmetry and the other back from monoclinic to orthorhombic symmetry, were observed in the computational model. The former transformation shows that the uniaxial compressive stress of about 4GPa destabilizes the BCO structure by reducing its symmetry to the experimentally observed monoclinic one. However, superposition of small shear stresses remarkably lowers the compressive stress necessary for this destabilization. The latter transformation then draws the crystal lattice to the B19 structure. The theoretical shear strength of NiTi martensite was subsequently computed as a function of the normal stress. The results obtained show that the e_ect of the normal stress is surprisingly opposite to that calculated for NiTi austenite and other cubic metals, i.e., that the shear strength is lowered by the compressive normal stress and vice versa.
A Uniform Hydrogen Degradation Law for High Strength Steels Is Proposed
A Uniform Hydrogen Degradation Law for High Strength Steels Is Proposed
A uniform hydrogen degradation law for high strength steels
Engineering Fracture Mechanics, 2016, Volume 157, page 56-71
Abstract: The degrading effect of hydrogen on high strength steels is well recognized. The hydrogen degradation is dependent not only on hydrogen content, but also on geometric constraints or equivalently, level of stress triaxiality, which means the hydrogen degradation locus is not likely to be a unique material property. Experimental data on notched tensile tests reported by Wang et al. are analyzed via cohesive zone modelling, and a cohesive strength based uniform hydrogen degradation law is proposed upon normalization of hydrogen degradation loci with different specimen geometries. Since the e ects of hydrogen content and geometric constraints are decoupled during normalization, the proposed law is applicable to all the specimen geometries as a material property. This law is subsequently applied to simulate the constant loading tests performed on the same material. Excellent agreement is observed between the simulation and test results in terms of incubation time for fracture initiation and highest permissible initial hydrogen content. The inconsistency observed in one of the cases is discussed, suggesting that the effects of strain rate and stress relaxation need to be taken into account in order to improve the transferability of the degradation law calibrated from tensile tests to constant loading situations.
Two FRINATEK projects signed with Research Council of Norway
Two FRINATEK projects signed with Research Council of Norway
NTNU Nanomechanical Lab received two projects from Research Council of Norway through the highly competitive FRIPRO program. One project titled "Engineering Metal-Polymer Interface for Enhanced Heat Transfer (HEFACE)” is led by Jianying He and funded by the FRINATEK Young Research Talents program. Another FRINATEK project “Towards Design of Super-Low Ice Adhesion Surfaces (SLICE)” is led Zhiliang Zhang. Contracts for both projects have been signed.
Colleagues from NTNU Gjøvik visited Nanomechanical Lab to discuss collaboration
Colleagues from NTNU Gjøvik visited Nanomechanical Lab to discuss collaboration
Deformation and fracture of nano-sized metal-coated polymer particles: A molecular dynamics study
Deformation and fracture of nano-sized metal-coated polymer particles: A molecular dynamics study
Engineering Fracture Mechanics, 2015, v150, p209-221
The mechanical behavior of Ni-coated polyethylene (PE) nanoparticles subjected to compression loading is systemically investigated by classical molecular dynamics simulation. Results show that the Ni coatings on PE nanoparticles lead to a densification of particle surface and remarkably enhance the compression strength. The particle size-effect and the coating thickness effect on the compression responses in terms of compressive strength and particle burst are observed. Burst of Ni-coated PE nanoparticles initiates at the high stress-concentrated grain-boundaries zone of polycrystalline Ni-shell, and propagates along the compression direction to the flattened contact surface, resulting in release of core PE molecules.
Inverse Hall-Petch and Hall-Petch Behaviour First Time Found for Gas Hydrates
Inverse Hall-Petch and Hall-Petch Behaviour First Time Found for Gas Hydrates
Nature Communications, 6: 8743. 2015 Nov 2.
GEMINI News: Uncovering secrets of ice that burns
GEMINI News: Den brennende isens hemmeligheter
Materials Today News: “Fire ice” an opportunity and a threat
PHYS ORG News: Key properties of methane hydrates found in permafrost and on the continental shelf
Sediment-hosted gas hydrates have profound impacts on global energy sources and climate change. Their mechanical properties play a crucial role in gas recovery and understanding their evolution in nature, however, the deformation mechanisms of gas hydrates have not yet been elucidated owing to the difficulties in experimental measurements. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected ductile ultimate strength as a result of crossover from grain-size strengthening to weakening in polycrystals. Upon uniaxial depressurization, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilizes the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insights into the destabilization mechanisms of gas hydrates caused by deformation beyond the conventionally thermodynamic instability.
Effects of Loading Path on the Fracture Loci in a 3D Space
Effects of Loading Path on the Fracture Loci in a 3D Space
Axi-symmetric and 3D unit cell analyses with continuous non-proportional loading paths are performed to investigate the path dependence of the fracture loci in a 3D space. The loading pattern utilized is the generalization of a number of non-proportional paths recorded in real tests. Failure of the unit cell is predicted when localization of plastic flow occurs, and the failure strains are plotted against the strain history averaged stress triaxiality and Lode parameter to construct fracture loci in a 3D space. The fracture locus with a non-proportional loading path deviates from that with a proportional loading path along the axis of stress triaxiality and becomes non-monotonic in high triaxiality regime. Meanwhile, such deviation occurs only when a certain level of triaxiality is reached. Agreement with the proportional locus as well as monotonicity maintains over a large range of stress triaxiality that covers most cases in reality, as long as the non –proportionality of the loading path is su_ciently low. This provides the rationale for utilizing the average triaxiality based fracture locus as an acceptable approximation in practice. Deviations of the non-proportional loci along the axis of Lode parameter are also observed. Further study on the Lode history dependence suggests using the final value of Lode parameter instead of the averaged one as the Lode axis in the fracture loci, which can alleviate the severity of path dependence for the loading patterns concerned. Based on these results, the e_ectiveness of the average stress state based fracture loci reported in the literature is discussed.
A SERS Study on the Assembly Behavior of Gold Nanoparticles at the Oil/Water Interface
A SERS Study on the Assembly Behavior of Gold Nanoparticles at the Oil/Water Interface
Langmuir, 2015, v31 (47), pp12911-12919
Herein, the assembly behavior of gold nanoparticles (AuNPs) at oil/water interface is studied by surface-enhanced Raman scattering (SERS) spectroscopy. Two selected chemicals (1-dodecanethiol (DDT) and tetramethylammonium ion (TMA+)) are applied to tune the surface properties of AuNPs and the corresponding assembly behaviors at oil/water interface are thoroughly investigated. Various AuNPs films, namely sparse 2D film, perfect monolayer, and multilayers are obtained. The SERS spectra analyses show that the surface composition of AuNPs is strongly dependent on the chemical environment around AuNPs and results in different morphologies of AuNPs film at oil/water interface. Accordingly, we propose a rational relationship between AuNPs assembly behavior at oil/water interface and their surrounding chemical environment, and thus reveal the physical mechanism underlying the nanoparticle assembly.
Structural Instability and Mechanical Properties of MoS2 Toroidal Nanostructures
Structural Instability and Mechanical Properties of MoS2 Toroidal Nanostructures
Molybdenum disulfide (MoS2) nanostructures have received considerable research attentions due to their outstanding physical and chemical properties. Recently, a form of MoS2 ring structure exhibiting unique transport properties has been experimentally identified. Herein, we present the first report describing direct molecular dynamics (MD) simulations of structural instability and mechanical properties of hypothetical MoS2 nanotube (NT) toroidal nanostructures. Nanorings with small MoS2 NTs' diameter retain their circular shape because of higher bending stability of NTs, while for those with large diameter of MoS2 NTs buckling/kinking and displacive phase transformation appear to effectively reduce bending stress as a mechanism for stabilizing the nanorings. However, the nanorings which have to polygonize maintain a circular shape as thick multi-walled inner nanorings are presented. Furthermore, mechanical responses of various nanoweaves (nanochains, nanomailles, and nanochainmailles) by linking nanorings together are also studied. Results show that Young’s modulus, stretchability and tensile strength of such nanoweaves depend not only on the helicity of MoS2 NTs but also the woven pattern. For example, nanostructures with 4-in-1 weave of nanorings exhibit much higher tensile strength and stiffness but lower extensibility than those with 2-in-1 weave. The finding suggests that MoS2 NT nanorings and their woven hierarchical structures may be used in the development of new flexible, light-weight electromechanical and optoelectronic nanodevices.
Czech-Norwegian cooperation in atomistic simulation
Czech-Norwegian cooperation in atomistic simulation
During October, 2015 we have started an international cooperation with CEITEC - Brno Univ. of Technology from the Czech Republic within the frame of the Norway Grants (proj. num. NF-CZ07-ICP-3-199-2015). The aim of this project is an international collaborative work between the Nanomechanical lab and the group of Advanced Metallic Materials and Metal Based Composites at the CEITEC in Brno. The main project objectives are focused to a collective work on ongoing research projects at the Nanomechanical lab, high quality scientific publications and knowledge exchange in atomistic modelling of materials properties using Ab initio and MD calculations. The project period is planned for twelve months and, at its beginning, Dr. Petr Šesták from CEITEC (the fifth person from the left site) has visited the Nanomechanical lab.
Selective growth of metallic nanostructures on microstructured copper substrate in solution
Selective growth of metallic nanostructures on microstructured copper substrate in solution
Selective growth of metallic micro/nanostructures on desired micropatterns was achieved via a simple solution-immersion process. Interestingly, metallic micro/nanostructures directly grow only inside the hollow copper micropatterns due to the different surface properties. Furthremore, these hierarchical micro/nanostructured Cu/CuO surfaces possess superhydrophobicity, low water adhesion forces and self-cleaning properties.
Extraordinary mechanical properties of smallest carbohelicene springs
Extraordinary mechanical properties of smallest carbohelicene springs
A joint work with Brno University of Technology, Czech Republic and Xiamen University, China has been published at Phys. Chem. Chem. Phys. 2015, v17 (28) pp18684-18690, DOI: 10.1039/c5cp02043c
Abstract: The extraordinary deformation and loading capacity of nine different [∞]carbohelicene springs under uniaxial tension up to their fracture were computed using the density functional theory. The simulations comprised either the experimentally synthetized springs of hexagonal rings or the hypothetical ones that contained irregularities (defects) as, for example, pentagons replacing the hexagons. The results revealed that the presence of such defects can significantly improve mechanical properties. The maximum reversible strain varied from 78% to 222%, the maximum tensile force varied in the range of 5 nN to 7 nN and, moreover, the replacement of hexagonal rings by pentagons or heptagons significantly changed the location of double bonds in the helicenes. The fracture analysis revealed two different fracture mechanisms that could be related to the configurations of double and single bonds located at the internal atomic chain. Simulations performed with and without van der Waals interactions between intramolecular atoms showed that these interactions played an important role only in the first deformation stage.
Delegation from Singapore to NTNU Nanomechanical Lab to discuss the cooperation in Arctic Icephobic Coatings
Delegation from Singapore to NTNU Nanomechanical Lab to discuss the cooperation in Arctic Icephobic Coatings
A delagation from Singapore Polytechnic visited NTNU Nanomechanical Lab to discuss the cooperation in Arctic Icephobic Coatings.
Master students became the winners of NTNU NanoLab Image contest 2015
Master students became the winners of NTNU NanoLab Image contest 2015
MSc student Emil Stokkeland developed a four wire measurement setup to investigate the electric properties of a silver coated polymer sphere, Ø 30 µm, with a 150 nm silver coating. Copyringht©Emil Stokkeland.
MSc student Jon Oddvar Kolnes developed Carbon nanotube arrays for anti-icing applications. Cross-sectional edge image of a desired structure: Carbon nanotubes, grown with an iron catalyst on a silicon substrate, with an aluminium oxide barrier layer. Copyringht©JOn Oddvar Kolnes.
Contact Resistance Measurement of Metal-coated Polymer Particles by Using miBots
Contact Resistance Measurement of Metal-coated Polymer Particles by Using miBots
Contact resistance measurement of nano-coated polymer particles. Experiment conducted by master student August Emil Stokkeland and PhD student Sigurd Pettersen.
Jianying He, an Outstanding Academic Fellow of NTNU
NML logo carved on a polymer particle by FIB
NML logo carved on a polymer particle by FIB
The NTNU Nanomechanical Lab logo made on a polymer parictcle by using the Focused Ion Beam. Image created by PhD student Sigurd Pettersen.
A New Project on Hydrogen Induced Fracture
A New Project on Hydrogen Induced Fracture
A NTNU-SINTEF-University of Oslo cooperation project titled "Hydrogen-induced degradation of offshore steels in ageing infrastructure - models for prevention and prediction(HIPP)" received 17 mkr from the Norwegian Research Council of Norway. The project is led by Zhiliang Zhang and will start from Spring 2014 and end Des 2017.
The primary objective of the HIPP project is to develop a model framework which describes and couples environment-assisted hydrogen degradation mechanisms at different length and time scales towards a predictive mechanism-based integrity assessment approach for oil and gas steel infrastructure.
A New Research Project to Start Spring 2014
A New Research Project to Start Spring 2014
A new KPN research project "Wettability alteration and improved flow transport by engineered nanoparticles for petroleum application" led by Professor Jianying He received 7.2 mkr funding from the Research Council of Norway's NANO2021 and PETROMAKS II programmes, the industrial partners Det norske oljeselskap ASA and Wintershall Holding GmbH. The project involves two PhD positions and will start spring 2014.
Nanoteknologi får ut gjenstridig olje
Thermal Conductivity of Carbon Nanocoils
Thermal Conductivity of Carbon Nanocoils
In our previous research published at SMALL and JACS, it was demonstrated that defects incorporated in a proper manner can enhance the mechanical properties of helical CNTs. However, in our paper recently published at Applied Physics Letters we found that the thermal conductivity of the same type HCNTs will be dramatically reduced by the presence of defects. Details see the paper.
A Novel Constitutive Model
A Novel Constitutive Model
In a recent paper published at Journal of Mechanics and Physics of Solids (JMPS) a novel constitutive model was presented.
The traditional model of Alexander and Haasen poses several limitations. We introduce in this work a novel constitutive model for covalent single crystals and its implementation into a rate-dependent crystal plasticity framework. It is entirely physically based on the dislocation generation, storage and annihilation processes taking place during plastic flow.
Tougher Than the Toughest Materials!
Tougher Than the Toughest Materials!
We show in a recent paper published at the high impact jounral Small that helical nanotubes could be tougher than the toughest materials.
Helical carbon nanotubes with intentionally incorporated non-hexagonal defects have unexpectedly high toughness and plasticity, in addition to the well-recognized extreme elasticity. The obtained toughness approaches 5000 J g-1 with decreasing spring radius. The high toughness originates from the plastic nanohinge formation as a result of distributed partial fractures. A strong spring size effect, contradictory to the continuum solution, is precisely described by an atomistic bond-breaking model.
Fracture and Negative Poisson’s Ratio of Novel Spanned-Fullerenes Nanotube Networks under Tension
Fracture and Negative Poisson’s Ratio of Novel Spanned-Fullerenes Nanotube Networks under Tension
Carbon-based nanomaterials have attracted significant attention due to their unique optical, electrical, thermal and mechanical properties. In this study, various multi-dimensional graphitic architectures are constructed by spanning fullerenes with carbon nanotube (CNT) super-bonds. The mechanical properties of these novel architectures are systematically investigated by full atomistic simulations. Surprising negative Poisson's ratio observed in 2D and 3D networks is revealed to originate as a result of curvature-flattening or rigid mechanical model. The magnitude of Poisson's ratio is strongly dependent on the level of strain, CNT length as well as temperature. The insight on the deformation mechanism of these periodic graphitic nanostructures will facilitate the integration of low-dimensional materials towards high-dimensional organized structures to realize targeted multi-functional properties.
New project with Aker Solutions on Materials Technology for Future Demands
New project with Aker Solutions on Materials Technology for Future Demands
Aker Solutions is co-funding a research programme together with the Norwegian University of Science and Technology on the subjects of materials technology and mechanical engineering. The aim of the programme is to understand and assess high-performance materials for use in high pressure, high temperature and corrosive environments. A project agreement between Aker Solutions and NTNU was signed on the 12th of Oct 2013. The project involves two PhD positions.
Photo: professor Zhiliang Zhang (NTNU), Jim Stian Olsen (Aker Solutions), Kjartan Pedersen (Aker Solutions), Krista Amato (Aker Solutions), professor Roy Johnsen (NTNU).
Crosslinking effect on the deformation and fracture of monodisperse polystyrene-co-divinylbenzene particles
Crosslinking effect on the deformation and fracture of monodisperse polystyrene-co-divinylbenzene particles
It has been found that the crosslinking density significantly influences the fracture property as well as the failure morphology. Slightly crosslinked particles become permanently deformed after compression, while highly crosslinked ones are entirely fragmented once a critical strain is reached.
Giant Stretchability and Reversibility of Helical Carbon Nanotubes
Giant Stretchability and Reversibility of Helical Carbon Nanotubes
Our recent work has been published at the premier Journal - the Journal of the American Chemical Society (JACS).
There is a surging interest in 3D graphitic nanostructures which possess outstanding properties enabling them to be prime candidates for a new generation of nanodevices and energy-absorbing materials. Here we study the stretching instability and reversibility of tightly-wound helical carbon nanotubes (HCNTs) by atomistic simulations. The inter-coil vdW interaction-induced flattening of HCNT walls prior to loading is constrained by the defects coordinated for the curvature formation of helices. The HCNTs exhibit extensive stretchability in the range from 400% to 1000% as a result of two distinct deformation mechanisms depending on HCNT size. For small HCNTs tremendous deformation is achieved by domino-type partial fracture events, whereas for large HCNTs this is accomplished by stepwise buckling of coils. The formation and fracture of edge-closed graphene ribbons occur at lower temperatures while at elevated temperatures the highly distributed fracture realizes a phenomenal stretchability. Results of cyclic stretching-reversing simulations of large HCNTs display pronounced hysteresis loops, which produce large energy dissipation via full recovery of buckling and vdW bondings. This study provides physical insights into the origins of high ductility and superior reversibility of hybrid CNT structures
Role of Five-fold Twin Boundary on the Enhanced Mechanical Properties of fcc Fe Nanowires
Role of Five-fold Twin Boundary on the Enhanced Mechanical Properties of fcc Fe Nanowires
Nano Letters, 2011, 11 (12), pp 5264–5273
In this work, the role of five-fold twin boundary on the structural and mechanical properties of fcc Fe nanowires is explored by classical molecular dynamics simulation with well-established embedded atom method (EAM) potential. Size-dependent mechanical properties of nanowires attributed to the surface tension in the literature. We identified, however, a new origin to the remarkable size effect on Young's modulus and tensile strength upon loss of elasticity of the novel five-fold twinned Fe nanowires. The inhomogeneous intrinsic stress due to the built-in five-fold twin structure contribute to the monatomic Young's modulus – elastic response per atom – distributed over the cross section, and results in size dependent Young's modulus. The five-fold twin boundaries strengthen the smaller nanowires by prohibiting dislocation nucleations in the fcc structure. Instead, phase transformation of fcc → bcc occurs at the elastic limit, and creates multi-grain structure that exhibits ductility. Yielding by dislocation nucleation is exclusively observed for larger nanowires at elevated temperature, followed simultaneously by the fcc → bcc phase transformation. Because of the five-fold twin structure, the central region of the nanowires experiences local expansion under elastic tension (negative Poisson's ratio). The critical stress/strain upon los of elasticity displays U-type temperature dependence.
Molecular-Dynamics Study Examines Effect of Nanoparticles on Oil/Water Flow
Molecular-Dynamics Study Examines Effect of Nanoparticles on Oil/Water Flow
A paper highlighted at the widely distributed Journal of Petroleum Technology
Our SPE paper (156995) "Effect of Nanoparticles on Oil-Water Flow in a Confined Nanochannel: a Molecular Dynamics Study" presented at the SPE International Oilfield Nanotechnology Conference and Exhibition held in Noordwijk, The Netherlands, 12–14 June 2012, has recently been highlighted at the Journal of Petroleum Technology, February 2013, 148-151.