course-details-portlet

TMT4252 - Electrochemistry

About

Examination arrangement

Examination arrangement: Written examination
Grade: Letters

Evaluation Weighting Duration Grade deviation Examination aids
Skriftlig eksamen 100/100 4 timer

Course content

Electric potentials and fields. Conductivity and capacitance. Thermodynamics of aqueous solutions: Activities and the Debye-Hückel-model. Electrolysis cells and galvanic cells with and without transfer. Potential differences across Liquid junctions. Electrosynthesis of metals and chemicals, electrodialysis and salt splitting. Electrochemical energy storage: Batteries and fuel cells. Electrodes and electrode reactions. Electrode kinetics: Current-voltage characteristics of charge-transfer reactions. Reaction order. Transport processes and mass transfer coefficients. Electrochemistry in analysis of the environment and environmental remediation. Elektrochemical description of biological cells. Transport-, activation- and ohmich overpotential. The electrochemical double layer in brief. Demonstration of a rotating electrode and a potensiostat.

Learning outcome

Upon course completion the student is able to

- define central parts of electrochemical cells and electrochemical equipment such as anode, cathode, membrane, diaphragm, liquid junction, reference electrode, and potentiostat
- define and relate mathematically basic physical and thermodynamic concepts related to electrochemical cells such as electric potential, electric field, cell potential, null potential, electrochemical potential, and activity
- account for sign conventions
- account for the electrochemical series and representation of electrochemical thermodynamics in Pourbaix diagrams
- define and describe mathematically diffusion, migration, and convection
-define transport, kinetic and ohmic overpotential
-calculate the combined transport and kinetic overpotential for electrodes at which a one-electron reaction takes place and for which transport can be described through mass transfer coefficients
- calculate ohmic overpotential for dilute solutions for macro- and microelectrodes such as trough electrodes, hemispherical electrodes, and disk electrodes
- calculate Tafel slopes and reaction orders for multiple-step electrochemical reactions in the absence of transport limitations
- calculate liquid-junction and membrane potentials in simple cases
- analyze a given electrochemical cell or experiment, judge to which extent the approximations underlying the above equations apply, and explain and predict quantitatively the outcome for cases in which they do
- describe the structure of the electrified interface, and define and describe mathematically the capacitance of the Helmholz layer
- give an overview of applications of electrochemistry in synthesis and purification of materials and chemicals, energy storage, biology, and analysis and remediation of the environment, and provide a description of selected processes within these areas

Learning methods and activities

Lectures and exercises. 2/3 of the exercises must be approved to qualify for the exam. During the course an excursion to visit electrochemical industries may be arranged.

Compulsory assignments

  • Midt term
  • Exercises

Further on evaluation

Access to the final examination on the condition that the mid-term test has been passed and that 2/3 of the problem sets have been approved.
If there is a re-sit examination, the examination form may be changed from written to oral.

Course materials

K. B. Oldham, J. C. Myland, and A. B. Bond, Electrochemical Science and Technology, John Wiley & Sons, Chichester (2012), ISBN 978047071045 (PB). Also availabele as e-book and in HB.

Credit reductions

Course code Reduction From To
TMT4250 3.7
More on the course

No

Facts

Version: 1
Credits:  7.5 SP
Study level: Third-year courses, level III

Coursework

Term no.: 1
Teaching semester:  SPRING 2018

Language of instruction: English, Norwegian

-

Subject area(s)
  • Electrochemistry
  • Materials Science and Engineering
  • Technological subjects
Contact information
Course coordinator:
  • Svein Sunde

Department with academic responsibility
Department of Materials Science and Engineering

Examination

Examination arrangement: Written examination

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Spring ORD Skriftlig eksamen 100/100 2018-05-23 09:00
Room Building Number of candidates
Summer UTS Skriftlig eksamen 100/100 2018-08-06 09:00
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
Examination

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU