Course - Mechanical Properties of Metals - TMT4222
TMT4222 - Mechanical Properties of Metals
About
Examination arrangement
Examination arrangement: School exam
Grade: Letter grades
Evaluation | Weighting | Duration | Grade deviation | Examination aids |
---|---|---|---|---|
School exam | 100/100 | 4 hours | HJELPEMIDD |
Course content
The subject is introduced by a review of experimental techniques for characterising mechanical properties with emphasize on simple tensile testing. It is given an introduction to dislocation theory necessary for the understanding of the mechanical properties of metals based on their crystalline nature. In particular the structures of aluminium, and steel are considered as these are of great importance for our national industry. Accordingly the basic mechanisms of yield phenomena and deformation hardening are treated. Relations between the microstructure and the mechanical properties are handled based on simple dislocation models. Furthermore, basic physical metallurgical theories for fracture is examined and an introduction to fatigue is made.
Learning outcome
Having completed this course the student should know how to: - Make simple assumptions and derive based on these the theoretical strength of an ideal crystal. - Explain how and why plastic deformation of metals occurs by dislocation glide. - Estimate cutting reactions and explain interactions between dislocations. - Calculate the distance between partial dislocations. - Explain how a Frank-Reead dislocation source act and calculate the critical stress to activate it. - Account for strengthening mechanisms due to work hardening, grain boundaries, alloying elements in solid solution or asparticles. - Derive the strength contribution from shearable and non-shearable particles. - Make simple assumptions and derive the theoretical fracture strength of an ideal crystal. - Account for and apply Griffiths theory about brittle fractures, simple fracture mechanics and a dislocation based model for ductile fractures. - Explain the difference between low and high cycle fatigue, Paris-Erdogans low for crack growth and give a physical metallurgical description of fatigue in single crystals. - Make simplifying assumptions and derive Orowans low for dislocation speed. - Determine the critical slp system and relate the critical resolved shear stress to the tensile stress in a tensile test of a single crystal. - Describe the various stages of the stress-strain curve resulting from a single crystal tensile test. - Carry out simple fracture mechanical calculations, discuss the transition from ductile to brittle fracture based on temperature, chemical composition, grain size etc. - Perform simple mathematical fatigue calculations, apply the Goodman diagram and calculate the lifetime from Miners rule. - Account for microstructure and slip activity during single crystal fatigue.
Learning methods and activities
Lectures and exercises. Lectures are given in English if there are students from the International master programme. Expected time spent: Lectures: 56 hours. Exercises: 24 hours. Self study: 120 hours. 8 out of 12 exercises must be approved,.
Compulsory assignments
- Exercises
Further on evaluation
It is allowed to bring an approved simple calculator and an fcc cube with inscribed tetrahedron at the exam. If there is a re-sit examination, the examination form may be changed from written to oral.
Recommended previous knowledge
TMT4177 Introduction to Materials Science, or similar.
Course materials
Lecture notes.
Credit reductions
Course code | Reduction | From | To |
---|---|---|---|
TMT4220 | 7.5 | AUTUMN 2008 |
Version: 1
Credits:
7.5 SP
Study level: Second degree level
Term no.: 1
Teaching semester: AUTUMN 2024
Language of instruction: English
Location: Trondheim
- Materials Science and Engineering
- Physical Metallurgy
- Technological subjects
Department with academic responsibility
Department of Materials Science and Engineering
Examination
Examination arrangement: School exam
- Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
- Autumn ORD School exam 100/100 HJELPEMIDD 2024-12-12 09:00 INSPERA
-
Room Building Number of candidates SL311 grønn sone Sluppenvegen 14 21 SL228 Sluppenvegen 14 3 - Summer UTS School exam 100/100 HJELPEMIDD INSPERA
-
Room Building Number of candidates
- * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
For more information regarding registration for examination and examination procedures, see "Innsida - Exams"