course-details-portlet

TMR4170 - Marine Structures

About

Examination arrangement

Examination arrangement: Aggregate score
Grade: Letter grades

Evaluation Weighting Duration Grade deviation Examination aids
Assignment 30/100
School exam 70/100 4 hours D

Course content

The course deals with the load-carrying functionality, load-effect analysis and design of ships and marine structures. The following topics are addressed: Linear elastic analysis of shell- and plate-structures including numerical methods. Energy principles and virtual work. Plate buckling based on second order theory. Analyttical and energy-based numerical solution methods. Buckling of plate panels. Cross-section analysis. Design criteria related to yielding, buckling and fatigue.

Learning outcome

a) To be able to explain the main types of load-carrying components in floating hulls and their associated mechanical limit states b) Demonstrate understanding of the mechanical basis for analysis of shells, and to be able to analyse the stress distribution in such components with focus on energy-based formulations c) To outline the main steps of the Finite Element Method. To be able to explain the physical properties and the corresponding matrix formulations related to shell elements, including linearized geometric stiffness. d) To be able to explain the difference between first- and second-order models for plate behavior and how this is reflected in the mathematical formulations e) Demonstrate mastering of buckling analysis of plates and stiffened panels based on first principles. To show thorough knowledge of the differential equation, analytical solutions and numerical solutions based on energy methods f) To be able to explain the principles underlying codified design rules related to buckling of stiffened plate panels g) Mastering of methods for cross-section analysis in relation to torsion and shear stress distribution for open and closed cross-sections h) To explain the steps related to fatigue life assessment of floating hulls based on the SN-curve approach and explain the concept of material class.

Learning methods and activities

Lectures and exercises, two of the exercises are graded.

Compulsory assignments

  • Exercises

Further on evaluation

The grade in the course is based on a written exam (70%) and exercises (30%). The results for the two parts are given as letter-grades, and the total grade is also given as a letter grade. Examination papers will be given in English only. Students are free to choose Norwegian or English for written assessments. If there is a re-sit examination, the examination form may change from written to oral. For a re-take of an examination, all assessments during the course must be re-taken.

Required previous knowledge

Some knowledge of Python programming.

Course materials

Compendiums.

Credit reductions

Course code Reduction From To
SIN1010 7.5
More on the course

No

Facts

Version: 1
Credits:  7.5 SP
Study level: Second degree level

Coursework

Term no.: 1
Teaching semester:  SPRING 2025

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Technological subjects
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Marine Technology

Examination

Examination arrangement: Aggregate score

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Spring ORD School exam 70/100 D INSPERA
Room Building Number of candidates
Spring ORD Assignment 30/100 INSPERA
Room Building Number of candidates
Summer UTS School exam 70/100 D INSPERA
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
Examination

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU