course-details-portlet

TMR4170

Marine Structures

Choose study year
Credits 7.5
Level Second degree level
Course start Spring 2025
Duration 1 semester
Language of instruction English
Location Trondheim
Examination arrangement Aggregate score

About

About the course

Course content

The course deals with the load-carrying functionality, load-effect analysis and design of ships and marine structures. The following topics are addressed: Linear elastic analysis of shell- and plate-structures including numerical methods. Energy principles and virtual work. Plate buckling based on second order theory. Analyttical and energy-based numerical solution methods. Buckling of plate panels. Cross-section analysis. Design criteria related to yielding, buckling and fatigue.

Learning outcome

a) To be able to explain the main types of load-carrying components in floating hulls and their associated mechanical limit states b) Demonstrate understanding of the mechanical basis for analysis of shells, and to be able to analyse the stress distribution in such components with focus on energy-based formulations c) To outline the main steps of the Finite Element Method. To be able to explain the physical properties and the corresponding matrix formulations related to shell elements, including linearized geometric stiffness. d) To be able to explain the difference between first- and second-order models for plate behavior and how this is reflected in the mathematical formulations e) Demonstrate mastering of buckling analysis of plates and stiffened panels based on first principles. To show thorough knowledge of the differential equation, analytical solutions and numerical solutions based on energy methods f) To be able to explain the principles underlying codified design rules related to buckling of stiffened plate panels g) Mastering of methods for cross-section analysis in relation to torsion and shear stress distribution for open and closed cross-sections h) To explain the steps related to fatigue life assessment of floating hulls based on the SN-curve approach and explain the concept of material class.

Learning methods and activities

Lectures and exercises, two of the exercises are graded.

Compulsory assignments

  • Exercises

Further on evaluation

The grade in the course is based on a written exam (70%) and exercises (30%). The results for the two parts are given as letter-grades, and the total grade is also given as a letter grade. Examination papers will be given in English only. Students are free to choose Norwegian or English for written assessments. If there is a re-sit examination, the examination form may change from written to oral. For a re-take of an examination, all assessments during the course must be re-taken.

Required previous knowledge

Some knowledge of Python programming.

Course materials

Compendiums.

Credit reductions

Course code Reduction From
SIN1010 7.5 sp
This course has academic overlap with the course in the table above. If you take overlapping courses, you will receive a credit reduction in the course where you have the lowest grade. If the grades are the same, the reduction will be applied to the course completed most recently.

Subject areas

  • Technological subjects

Contact information

Course coordinator

Lecturers

Department with academic responsibility

Department of Marine Technology