course-details-portlet

TMM4140

Mechanical Properties of Materials

Choose study year
Credits 7.5
Level Third-year courses, level III
Course start Spring 2025
Duration 1 semester
Language of instruction English
Location Trondheim
Examination arrangement Aggregate score

About

About the course

Course content

This course discusses the basics of mechanics and materials science with the objective of rationalizing, predicting, modifying and describing the mechanical behavior of materials. The focus is on the correlation between structure-property-performance.

The course starts with the stress and strain in the elastic regime, followed by the mechanisms of plastic deformation and failure. It concentrates on the physics of plastic deformation and its interaction with the microstructure. The course also covers different strengthening mechanisms, mechanical testing approaches from nano to macro-scale levels. In addition, materials degradation under different environmental conditions, in particular hydrogen, are highlighted too.

For polymers, the temperature dependence of mechanical properties, and failure mechanisms such as yielding, crazing, creep and stress rupture are presented. Time-dependent viscoelastic response of polymers is evaluated from Kelvin, Maxwell, Zener, and four parameter models. Curve fitting of relaxation stresses is carried out by using Prony series. Boltzmann superposition principle and the time-temperature superposition principle are reviewed. Rubbers with nonlinear elastic stress-extension characteristics are introduced.

A selection of ‘super-materials’ with extreme mechanical properties are introduced and reviewed at the end of the course.

Learning outcome

Knowledge:

  • Advanced knowledge about micro-macro relationships and theory of plasticity in relation to plastic forming.
  • Knowledge about time and temperature dependent response of polymers, failure mechanisms, and rubber elasticity.
  • Knowledge and understanding of quantitative relationships used for mechanical properties of materials.

Skills:

  • Apply the knowledge to the material groups aluminium, nickel alloy, steel, stainless steel, and polymers.
  • Basic modeling of viscoelasticity, applying the Boltzmann superposition principle, modelling of the behaviour of rubbers, and the estimation of homogenized properties for composites.

General competence:

  • Carry out case studies with other students and plan, perform, and present the results.
  • Can cooperate and have a good understanding of cooperative working procedures.
  • Ability to communicate in technical language.

Learning methods and activities

The teaching is based on lectures, exercises, and a project work. For project work, a list of possible topics will be provided. However, proposals for interesting course related topics are also welcome. The students work in teams on a selected topic.

Further on evaluation

The outcome of teamwork in the form of a presentation+QA will be evaluated, and 20% of the final grade will be based on this evaluation. If significant differences in the contributions from group members have been documented, individual adjustment of final grading may be considered. Portfolio assessment is the basis for the grade in the course. Portfolio includes presentation (max 20%) and individual home assignments (max 20%). The results for the parts are given in %-scores, while the entire portfolio is assigned a letter grade.

If there is a re-sit examination, the examination form may be changed from written to oral. For a re-take of an examination, all assessments during the course must be re-taken.

Exercise hours are intended for working on home assignments and on the project work with guidance from TAs and the professors. Individually completed home assignments are handed in at specific deadlines throughout the semester. Project work is prepared and presented as groupwork at the end of the semester (usually before the examination-period).

Course materials

Will be specified in the first lecture.

Credit reductions

Course code Reduction From
SIO2035 7.5 sp
This course has academic overlap with the course in the table above. If you take overlapping courses, you will receive a credit reduction in the course where you have the lowest grade. If the grades are the same, the reduction will be applied to the course completed most recently.

Subject areas

  • Technological subjects

Contact information

Course coordinator

Lecturers

Department with academic responsibility

Department of Mechanical and Industrial Engineering