course-details-portlet

TKP4120

Process Engineering

Choose study year
Credits 7.5
Level Foundation courses, level I
Course start Spring 2021
Duration 1 semester
Language of instruction Norwegian
Location Trondheim
Examination arrangement Home examination

About

About the course

Course content

Topics from thermodynamics and physical chemistry: State variables, ideal gas, equations of state, work and heat, Laws of thermodynamics, internal energy, enthalpy, entropy, Gibbs energy, equilibrium. Topics from process engineering: The balance principle. Mass balances. Mass balances with chemical reactions. Energy balances (2nd law of thermodynamics). Heat exchange. Mechanical work (compression and expansion). Work from heat. Process modelling using Python.

Learning outcome

At the end of the subject the students should:
- Know how mass and energy balances are formulated in a stationary system.
- Use the 1. and 2. law of thermodynamics together with mass balances and equilibrium relations to find the equilibrium product composition after a reactor.
- Formulate and solve an equation system of mass and energy balances for a stationary process with reaction, separation and recirculation.
- Do quantitative calculations of mass and energy balances in stationary chemical processes.
- Do simple simulations of mass and energy balances in stationary chemical processes.
- Calculate the necessary area of a heat exchanger.
- Calculate the heating/cooling effect and energy consumption in a heat pump or refrigerator.
- Use energy and mass balances to do stationary calculations of turbines, pumps, valves, heat exchangers, splits, mixing units, heat exchangers, refrigerators and reactors.
- Have detailed knowledge of at least one chemical process from the Norwegian process industry.

Learning methods and activities

Lectures (in Norwegian), compulsory exercises.

Compulsory assignments

  • Exercises

Further on evaluation

If there is a re-sit examination, the examination form may change from written to oral.

Course materials

S. Skogestad, Prosessteknikk, Tapir Akademisk Forlag 2009, 3rd edition.

Credit reductions

Course code Reduction From
SIK2025 7.5 sp
TKJE2006 7.5 sp
TPRK2002 7.5 sp
This course has academic overlap with the courses in the table above. If you take overlapping courses, you will receive a credit reduction in the course where you have the lowest grade. If the grades are the same, the reduction will be applied to the course completed most recently.

Subject areas

  • Technological subjects

Contact information

Course coordinator

Lecturers

Department with academic responsibility

Department of Chemical Engineering