course-details-portlet

TKP4110 - Chemical Reaction Engineering

About

Examination arrangement

Examination arrangement: Portfolio assessment
Grade: Letter grades

Evaluation Weighting Duration Examination aids
Work 20/100
School exam 80/100 4 hours D

Course content

The course is divided in a theoretical part and a laboratory part. The theory part includes 4 hours lectures + 2 hours exercises +4 hours of self-studying, in total 10 hours per week. The lab includes two exercises and that should be carried out in the semester. The lab work takes 10 hours in total. Taking into account of report writing, the student is expected to spend 30 hours in total on the lab part. The theoretical part contains an overview of homogeneous and heterogeneous reaction mechanisms with particular emphasis on the relation between diffusion, heat transfer and reaction rate. Heterogeneous catalysis including reactions between gases, liquids and solid materials is also dealt with. Calculation of conversion and yields in batch reactors and in flow systems i.e. plug flow reactors and continuous-stirred tank reactors. Reactor stability and optimalisation of the reaction path. The laboratory work includes one exercise related to a topic from the theoretical part. The laboratory work is coordinated by Heinz Preisig and Gøril Flatberg .

Learning outcome

At the end of the course the students should: - Explain the different steps in reaction mechanisms on catalytic surfaces and identify the rate-determining step. - Make qualified choices of optimal reactor design, Batch, CSTR or PFR, or configurations of reactors in series. - Understand the different importance of kinetic and thermodynamic considerations for the choice of feed temperature in reactor systems for equilibrium reactions. - Understand the effect of variation flow rate, temperature and particle size on the total reaction rate in a system that is controlled both by mass transfer and reaction. - Plan and interpret experimental data to determine kinetic parameters for chemical reactions. - Determine conversion and yield for chemical reactions. - By an enthalpy analysis to derive the energy balance for continuous steady state reactor systems. - Determine the volume of reactor systems based on kinetic data and mass and heat balances.

Learning methods and activities

The course is given as a combination of lectures, exercises, self-study and laboratory work. Admission to the exam requires that 80% of the exercises are approved.

Compulsory assignments

  • Exercises

Further on evaluation

Portfolio assessment is the basis for the grade in the course. The portfolio includes a final written exam (80%) and the laboratory grading (20%). The results for the parts are given in %-scores, while the entire portfolio is assigned a letter grade. If there is a re-sit examination, the examination form may be changed from written to oral. For a re-take of an examination, all assessments during the course must be re-taken.

Course materials

H. Scott Vogler: Elements of Chemical Reaction Engineering. Prentice-Hall, Inc. 4th or 5th edition.

Credit reductions

Course code Reduction From To
SIK2015 7.5
TKJE3004 3.7 AUTUMN 2018
More on the course

No

Facts

Version: 1
Credits:  7.5 SP
Study level: Third-year courses, level III

Coursework

Term no.: 1
Teaching semester:  AUTUMN 2021

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Technological subjects
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Chemical Engineering