course-details-portlet

TFY4355 - Quantum Information and Computation

About

New from the academic year 2024/2025

Examination arrangement

Examination arrangement: School exam
Grade: Letter grades

Evaluation Weighting Duration Grade deviation Examination aids
School exam 100/100 4 hours C

Course content

One of the most exciting quantum technologies proposed is quantum computation, where information is coded in quantum bits (qubits), instead of classical bits. Since these qubits can be in a superposition of 0 and 1 and can be entangled with each other, a quantum computer could perform certain tasks exponentially faster than a regular computer, such as database searching and prime factorization. This advantage is expected to revolutionize fields ranging from cryptography and image recognition to quantum chemistry and drug development. This course presents an introduction to quantum information and computation, from a physicist's perspective. After reviewing the basic quantum mechanics and linear algebra needed to understand the qubit, we will discuss single- and two-qubit gates and show how they together offer universal quantum computation. We will exemplify the quantum advantage by combining these gates into different quantum algorithms, such as the Deutsch-Jozsa, phase estimation, and prime factorization algorithms. We then discuss the basics of quantum error correction, showing how it is possible to recover randomly occurring errors in the performance of an algorithm. Finally, we will connect the rather abstract ideas we developed so far to reality again, by investigating the physical working of several leading qubit platforms, including spin qubits and superconducting qubits.

Learning outcome

  • A thorough understanding of the basics of quantum information and computation and insight in the essence of quantum advantage.
  • A good overview of the most important quantum algorithms proposed and a deeper understanding of their workings.
  • Conceptual understanding of quantum error correction.
  • Insight in the physics of the leading qubit implementations.

Learning methods and activities

Lectures. Expected workload in the course is 225 hours.

Further on evaluation

Written exam.

The re-sit examination may be oral.

Course materials

Lecture notes and powerpoint slides.

More on the course

No

Facts

Version: 1
Credits:  7.5 SP
Study level: Second degree level

Coursework

Term no.: 1
Teaching semester:  AUTUMN 2024

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Theoretical Physics
Contact information
Course coordinator:

Department with academic responsibility
Department of Physics

Examination

Examination arrangement: School exam

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Autumn ORD School exam 100/100 C INSPERA
Room Building Number of candidates
Summer UTS School exam 100/100 C INSPERA
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
Examination

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU