Course - Introduction to Algorithms - TDT4121
TDT4121 - Introduction to Algorithms
About
Examination arrangement
Examination arrangement: School exam
Grade: Letter grades
Evaluation | Weighting | Duration | Grade deviation | Examination aids |
---|---|---|---|---|
School exam | 100/100 | 4 hours | E |
Course content
Methods for analysing the efficiency of algorithms, divide and conquer techniques, recursive solution methods. Methods for ordering, searching and sorting. Data structures for efficient retrieval of data, dynamic programming and greedy algorithms. Data structures for implementing graphs and networks, as well as methods for traversals and searches. Algorithms for finding the best path(s) and matchings, spanning trees and maximum flow. Theory of problem complexity. Algorithms are expressed in a language-independent manner.
The course is equivalent to TDT4120 Algorithms and Data Structures as a basis for later courses, but is aimed toward programs that do not have computer science as part of their core.
Learning outcome
Knowledge: The candidate should have knowledge about (1) a broad spectrum of established algorithms that are useful in several areas of application, (2) classical algorithmic problems with known efficient solutions, and (3) complex problems without known efficient solutions.
Skills: The candidate should be able to (1) analyze the efficiency of an algorithm to achieve good solutions for a given problem, (2) formulate a problem so it can be handled in a rational manner by an algorithm, and (3) use well-known design methods to construct new efficient algorithms.
General competence: The candidate should be able to (1) use well-known algorithms and available program modules on new problems, and (2) develop and implement new solutions for complex problems with a basis in practical reality.
Learning methods and activities
Lectures and individual exercises.
Compulsory assignments
- Exercises
Further on evaluation
If there is a re-sit examination, the examination form may change from written to oral.
Recommended previous knowledge
The students are assumed to have basic programming skills, and to have a some understanding of recursion. The students would also benefit from being familiar with basic mathematical notation and such concepts as functions, monotonicity, logarithms, polynomials, limits, sets, relations, orders, graphs, trees, permutations and combinations, proof by induction, series and partial sums, and basic probability calculus.
Course materials
Kleinberg and Tardos: Algorithm Design. ISBN: 9781292023946
Credit reductions
Course code | Reduction | From | To |
---|---|---|---|
TDT4120 | 7.5 | AUTUMN 2022 | |
IT1105 | 7.5 | AUTUMN 2022 | |
MNFIT115 | 7.5 | AUTUMN 2022 | |
MNFIT112 | 7.5 | AUTUMN 2022 | |
SIF8010 | 7.5 | AUTUMN 2022 | |
IDATA2302 | 7.5 | AUTUMN 2022 | |
IDATT2101 | 7.5 | AUTUMN 2022 |
Version: 1
Credits:
7.5 SP
Study level: Intermediate course, level II
Term no.: 1
Teaching semester: AUTUMN 2024
Language of instruction: English
Location: Trondheim
- Technological subjects
Department with academic responsibility
Department of Computer Science
Examination
Examination arrangement: School exam
- Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
- Autumn ORD School exam 100/100 E 2024-12-10 15:00 INSPERA
-
Room Building Number of candidates SL311 lyseblå sone Sluppenvegen 14 96 SL311 orange sone Sluppenvegen 14 22 - Summer UTS School exam 100/100 E INSPERA
-
Room Building Number of candidates
- * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
For more information regarding registration for examination and examination procedures, see "Innsida - Exams"