Course - Nuclear and Radiation Physics - FY6023
FY6023 - Nuclear and Radiation Physics
About
Lessons are not given in the academic year 2024/2025
Course content
This course describes models for the constituents and properties of nuclei, nuclear reactions and radioactivity, description of various mechanisms for interaction between ionizing radiation and matter, and introduction to radiation dosimetry. The course includes applications such as detection of radiation, analytical methods, nuclear power generation, environmental exposure to ionizing radiation, risk assessment, and radiation protection.
Learning outcome
Knowledge
The candidate should have knowledge about:
- Constituents and properties of nuclei, nuclear reactions and accompanying radiations, as well as mechanisms for the interaction of radiation with matter.
This includes: nuclear models and nuclear properties, nuclear reactions, with emphasis on alpha, beta and gamma radiation related to strong, weak and electromagnetic interactions, mechanisms for the interaction of radiation with matter, radiation dosimetry, biological effects of ionizing radiation, radiation protection, nuclear power, fusion reactions, industrial and medical applications and nuclear methods and ionizing radiation.
Skills
The candidate should be able to:
- Find and use relevant tables and data to assess and evaluate the occurrence and effects of nuclear processes and ionizing radiation.
- Calculate radiation doses and evaluate health effects of ionizing radiation.
- Acquire spectroscopic data of beta and gamma radioactivity and the radiation's interaction with matter, using NaI and HPGe detectors combined with computer-based multichannel analysis.
General competence
The candidate should be able to:
- Analyze and interpret registered radiation spectra, and communicate the result of such investigations in writing.
- Interpret and present scientific data obtained during the practical work in the laboratory and group work.
- Read and present research literature.
Learning methods and activities
Lectures, problem solving, mandatory laboratory assignments and mandatory project work with presentations. Teaching will be in English if students on international master programs are attending the course. Expected workload in the course is 225 hours.
Compulsory assignments
- Lab exercises
- Project work/presentation
Further on evaluation
The final written (digital) exam is the basis for the grade in the course. The re-sit examination (in August) may be changed from written to oral. For a re-take of an examination, all assessments in the portfolio must be re-taken. When lectures and lecture material are in English, the exam may be given in English only.
Specific conditions
Admission to a programme of study is required:
- (EVUNVC100)
Recommended previous knowledge
Course TFY4215, or equivalent.
Course materials
J. Lilley: Nuclear Physics, John Wiley og Sons, 2001. Some supplementary material.
Credit reductions
Course code | Reduction | From | To |
---|---|---|---|
TFY4225 | 7.5 | AUTUMN 2021 |
No
Version: 1
Credits:
7.5 SP
Study level: Further education, higher degree level
No
Language of instruction: English
Location: Trondheim
- Physics
- Technological subjects
Department with academic responsibility
Department of Physics
Department with administrative responsibility
Section for quality in education and learning environment
Examination
- * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
For more information regarding registration for examination and examination procedures, see "Innsida - Exams"