course-details-portlet

FY3464

Quantum Field Theory I

Choose study year
Credits 7.5
Level Second degree level
Course start Spring 2025
Duration 1 semester
Language of instruction English
Location Trondheim
Examination arrangement School exam

About

About the course

Course content

Free scalar field theory, Green functions, symmetries and Noether's theorem, path integrals, Wick's theorem, Feynman diagrams, n-point correlators, interacting scalar field theory, regularization and renormalization, loop diagrams, effective couplings, Dirac equation and its solutions, Lorentz algebra, Quantization of Dirac field and its propagator, symmetries of the Dirac Lagrangian, Grassmann variables, fermionic path integrals, S-matrix, LSZ-reduction formula.

If time: the electromagnetic gauge field and its quantization, gauge field propagator, scalar QED, spontaneous symmetry breaking, Higgs mechanism

Learning outcome

The student is expected to obtain knowledge about the fundamental principles and formalisms of quantum field theories, and the use of Feynman diagrams for quantitative analysis of such. In particular, students are expected to obtain knowledge about path integrals, wave equations for scalar and general tensor fields, Feynman rules for scalar theories, loop diagrams, symmetries and the Noether theorem, the Dirac equation, Weyl and Majorana spinors, scattering processes, gauge theories, regularization and renormalization.

General competence: The candidate should be able to apply abstract mathematical models to concrete physical problems

Learning methods and activities

Lectures and problem sessions. Expected workload in the course is 225 hours.

Further on evaluation

Written exam. Re-sit exam may be changed from written to oral.

Course materials

Lectures notes in QFT by J. Minahan.

Supplementary material: D. Bailin and A. Love, Introduction to Gauge Field Theory, Adam Hilger, Bristol A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press. M. Kachelriess: Lecture notes for FY3464 and FY3466.

Credit reductions

Course code Reduction From
MNFFY464 7.5 sp
FY8914 7.5 sp Autumn 2017
This course has academic overlap with the courses in the table above. If you take overlapping courses, you will receive a credit reduction in the course where you have the lowest grade. If the grades are the same, the reduction will be applied to the course completed most recently.

Subject areas

  • Theoretical Physics
  • Physics

Contact information

Course coordinator

Lecturers

Department with academic responsibility

Department of Physics