QuSpin International Conference June 2024

Quantum Spintronics 2024 - International Conference

Quantum Spintronics 2024 - International Conference June 5th - 7th

Program for the Quantum Spintronics 2024 Conference (PDF)


Center for Quantum Spintronics (QuSpin)

NTNU and SFF logos SFF QuSpin, Center for Quantum Spintronics

Our vision is to trigger a revolution in low-power information and communication technologies in an energy-efficient society.

QuSpin´s objective is to develop the basic science that uses quantum entities such as the electron spin as information carriers in radically different ways. We aim at groundbreaking basic research that is crucial to the  development of fast, high-capacity, material systems and tools for smaller and more power-efficient electronic devices.

QuSpin Objective and Goal

Objective and Goal

Illustration of a man and a formula

Our Energy Efficient Future

A motivation is the usage statistics behind Apple, Google, YouTube, Netflix, and data mining for Bitcoin, as a few examples of the staggering amounts of data transfer and storage capacity that is needed for these services. Followed by their continuously increasing energy consumption needs, new ways to handle this efficiently is a pressing matter.

Electronic spin counterclockwise. Illustration

The Electronic Spin

Quasi-particles can convey spin information with exceptional tiny energy losses, considering the dynamical evolution of the spin states for high-speed electronics. A supercurrent is a remarkable phenomenon where a current can flow in a supercurrent with no electrical resistance and no energy loss.

Four persons holding a glass plate. Photo

SFF QuSpin - Center of Excellence

The QuSpin center was in 2017 recognized as one of the ten new Centers of Excellence by the Research Council of Norway, 2017-2027. From left: Jacob Linder, Arne Brataas, Asle Sudbø and Justin Wells

Videos

Featured Publications

Featured Publications 

 

Publications

Illustration of publication graph

Colloquium: Spin-orbit effects in superconducting hybrid structures

Rev. Mod. Phys. 96, 021003 – Published 28 May 2024. Morten Amundsen, Jacob Linder, Jason W. A. Robinson, Igor Žutić, and Niladri Banerjee
Abstract

Spin-orbit coupling (SOC) relates to the interaction between an electron’s motion and its spin and is ubiquitous in solid-state systems. Although the effect of SOC in normal-state phenomena has been extensively studied, its role in superconducting hybrid structures and devices elicits many unexplored questions.…

View publication
Illustration of publication graph

dc Josephson Effect in Altermagnets

Phys. Rev. Lett. 131, 076003 – Published 17 August 2023. Ali Ouassou, Jabir; Brataas Arne; Qaiumzadeh, Alireza; Linder, Jacob.
Abstract

The ability of magnetic materials to modify superconductors is an active research area for possible applications in thermoelectricity, quantum sensing, and spintronics. We consider the fundamental properties of the Josephson effect in a class of magnetic materials that recently have attracted much attention: altermagnets...

View publication
Illustration of publication graph

Chirality-Driven Orbital Angular Momentum and Circular Dichroism in CoSi

Phys. Rev. Lett. 132, 196402 – Published 10 May 2024. S. S. Brinkman, Xin Liang Tan, B. Brekke, A. C. Mathisen, Ø. Finnseth, R. J. Schenk, K. Hagiwara, Meng-Jie Huang, J. Buck, M. Kalläne, M. Hoesch, K. Rossnagel, Kui-Hon Ou Yang, Minn-Tsong Lin, Guo-Jiun Shu, Ying-Jiun Chen, C. Tusche, and H. Bentmann.
Abstract

Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures…

View publication

More Publications

News QuSpin front page

Highlights

What's happening this week. 


Course, Wednesday June 12th, at 10.30-12.30, in E5-103. By journalist Svein Tønseth. Title:  Kronikkskriving og annen populær-vitenskapelig formidling (in Norwegian)

Leader Group Meeting, Wednesday June 12th, at 2 PM, in E5-103.

Guest seminar, Friday June 14th, at 2.15-3 PM, in E5-103 by Professor Sergio Machado Rezende, Universidade Federal de Pernambuco, Recife, Brasil. Title: Spintronics: Fundamentals and recent progress

Spinmaster this week Jacob Benestad.

Front page of an annual report. Photo

Annual Report 2023

Quspin Annual Report 2023 (PDF)

 

Main Research Topics

Researchers Work and Collaboration