Navigasjon

  • Hopp til innhold
NTNU Hjemmeside

NTNU SmallSat Lab

  • Home
  • About
    • Team
    • Organization
    • Observational Pyramid
    • Contacts
    • Facilities
    • Events
  • Research & Projects
    • Publications
    • DiverSEA
    • System-of-Systems
    • HYPSCI
    • ARIEL
    • AWAS
    • Supporting Projects
    • Awards
    • AuroraSpace
    • Green Platform
    • Past Projects
  • For Students
    • Project and Master Subjects 2025-2026
    • Past Projects
  • Missions
    • HYPSO-1
    • HYPSO-2
    • HYPSO-3
    • GNSS-R
  • Data & Software
    • Python for HYPSO
    • Labeld Data
    • Raw Data
  1. NTNU SmallSat Lab For Students Past Projects
  2. Project and master assignments 2022
  3. Sentinel satellite multispectral data to aid HYPSO-1 imaging

Språkvelger

Sentinel satellite multispectral data to aid HYPSO-1 imaging

×
  • Project and Master Subjects 2025-2026
  • Past Projects
    • Project and Master Subjects 2024-2025
    • Project and Master Subjects 2023-2024
    • Project and master assignments 2022
      • Ocean Color Data Analysis
      • Software Development for Optical CubeSat Payload
      • Ensemble Biomass Estimation
      • Topics on Hyperspectral Image Encoding
      • Atmospheric Correction of HYPSO-1
      • Remote sensing data fusion for algae detection
      • HYPSO hyperspectral satellite data fusion with in-situ sensors
      • HYPSO-1 data georectification using direct and indirect methods
      • Generation and calibration of HYPSO-1 data products
      • Sentinel satellite multispectral data to aid HYPSO-1 imaging
      • Verification and validation of HYPSO-2 optical payload
      • HYPSO-2: Designing a Software-defined-radio (SDR) application experiment for communication between on-ground sensor systems
      • HYPSO-2: Designing experiment for channel characterization using the Software-defined-radio (SDR) payload in HYPSO-2
      • HYPSO - Space environment effects on hyperspectral imager: performing thermal experiments and modelling
      • Software Development for Optical CubeSat Payload
      • Re-design and re-configuration for hardware-software test-bench for HYPSO-1 and HYPSO-2 (FlatSat)
      • Automation of operations for the HYPSO-1 satellite
      • HYPSO - Georeferencing, operations - Incorporating ADCS telemetry into the OPU
MENY

Sentinel satellite multispectral data to aid HYPSO-1 imaging

Because Sentinel-3 observes large regions of the ocean, it can be used to identify regions of interest for NTNU's HYPSO-1 hyperspectral imaging satellite, which collects more detailed information about a smaller region. In particular, we are interested in identifying locations of potential algal blooms, which are a danger to fish farms.

  • HYPSO-1 observes only a small region of the Norwegian coast, although with low latency and high revisit time

  • Other satellites (Sentinel-2/3 in particular) observe more of the coast with a higher revisit time and lower spectral resolution

  • The goal of this project is to search through the incoming data from other satellites for possible algal blooms, so that HYPSO can be pointed towards the relevant region

  • This would be affiliated with the Grønn platform project, so there will be significant interaction with our fish farming industrial partners

  • can be extended to enable for the masters’ thesis

NTNU – Norges teknisk-naturvitenskapelige universitet

  • For ansatte
  • |
  • For studenter
  • |
  • Innsida
  • |
  • Blackboard

Studere

  • Om studier
  • Studieprogram
  • Emner
  • Videreutdanning
  • Karriere

Aktuelt

  • Nyheter
  • Arrangement
  • Jobbe ved NTNU

Om NTNU

  • Om NTNU
  • Bibliotek
  • Strategi
  • Forskning
  • Satsingsområder
  • Innovasjon
  • Organisasjonskart
  • Utdanningskvalitet

Kontakt

  • Kontakt oss
  • Finn ansatte
  • Spør en ekspert
  • Pressekontakter
  • Kart

NTNU i tre byer

  • NTNU i Gjøvik
  • NTNU i Trondheim
  • NTNU i Ålesund

Om nettstedet

  • Bruk av informasjonskapsler
  • Tilgjengelighetserklæring
  • Personvern
  • Ansvarlig redaktør
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Logg inn
NTNU logo