Navigasjon

  • Hopp til innhold
NTNU Hjemmeside NTNU Hjemmeside

Department of Physics

  • Studies
    • Master's programmes in English
    • For exchange students
    • PhD opportunities
    • All programmes of study
    • Courses
    • Financing
    • Language requirements
    • Application process
    • Academic calendar
    • FAQ
  • Research and innovation
    • NTNU research
    • Research excellence
    • Strategic research areas
    • Innovation resources
    • PhD opportunities
  • Life and housing
    • Student in Trondheim
    • Student in Gjøvik
    • Student in Ålesund
    • For researchers
    • Life and housing
  • About NTNU
    • Contact us
    • Faculties and departments
    • Libraries
    • International researcher support
    • Vacancies
    • About NTNU
    • Maps
  1. Department of Physics
  2. Annual Reports
  3. Annual Reports

Språkvelger

Norsk

Annual Reports - Department of Physics

×
  • Home
  • Contact information
  • Employees
  • Programmes of study
  • Research
  • Events
  • Open positions
  • Annual Reports
    • Annual Reports
  • Physicists' Meeting 2025
MENY

What is Physics at NTNU?

What is Physics at NTNU?

 

Physics is a natural science based on experiments, measurements and mathematical analysis with the purpose of finding quantitative physical laws for everything from the nanoworld of the microcosmos to the planets, solar systems and galaxies that occupy the macrocosmos.

The laws of nature can be used to predict the behaviour of the world and all kinds of machinery. Many of the everyday technological inventions that we now take for granted resulted from discoveries in physics. The basic laws in physics are universal, but physics in our time is such a vast field that many subfields are almost regarded as separate sciences.

The early Greeks established the first quantitative physical laws, such as Archimedes' descriptions of the principle of levers and the buoyancy of bodies in water. But they did not actually conduct experiments, and physics as science stagnated for many centuries. By the 17th century, however, Galileo Galilei and later Issac Newton helped pioneer the use of mathematics as a fundamental tool in physics, which led to advances in describing the motion of heavenly bodies, the laws of gravity and the three laws of motion.

The laws of electricity, magnetism and electromechanical waves were developed in the 1800s by Faraday and Maxwell, in particular, while many others contributed to our understanding of optics and thermodynamics.

Modern physics can be said to have started around the turn of the 20th century, with the discovery of X-rays (Röntgen 1895), radioactivity (Becquerel 1896), the quantum hypothesis (Planck 1900), relativity (Einstein 1905) and atomic theory (Bohr 1913).

Quantum mechanics (Heisenberg and Schrödinger), beginning in 1926, also gave scientists a better understanding of chemistry and solid state physics, which in turn has led to new materials and better electronic and optical components. Nuclear and elementary particle physics have become important fields, and particle physics is now the basis for astrophysics and cosmology.

Photo What is Physics?

Researcher with instrument. Photo
Photo: Per Henning/NTNU

NTNU – Norges teknisk-naturvitenskapelige universitet

  • For ansatte
  • |
  • For studenter
  • |
  • Innsida
  • |
  • Blackboard

Studere

  • Om studier
  • Studieprogram
  • Emner
  • Videreutdanning
  • Karriere

Aktuelt

  • Nyheter
  • Arrangement
  • Jobbe ved NTNU

Om NTNU

  • Om NTNU
  • Bibliotek
  • Strategi
  • Forskning
  • Satsingsområder
  • Innovasjon
  • Organisasjonskart
  • Utdanningskvalitet

Kontakt

  • Kontakt oss
  • Finn ansatte
  • Spør en ekspert
  • Pressekontakter
  • Kart

NTNU i tre byer

  • NTNU i Gjøvik
  • NTNU i Trondheim
  • NTNU i Ålesund

Om nettstedet

  • Bruk av informasjonskapsler
  • Tilgjengelighetserklæring
  • Personvern
  • Ansvarlig redaktør
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Logg inn
NTNU logo