Active Biomedical Ceramics

Active Biomedical Ceramics

Picture of microstructure.

MenuBio

We are an interdisciplinary team combining expertise in Chemistry, Physics, Materials Engineering and Chemical Engineering, and with a passion for the development of functional materials for biomedical applications.

Our research interests cover all aspects from the development of processing routes for tailored ceramics, thin films and nanoparticles, over the optimization of functional properties to the characterization of long-term stability and compliance under biomedical conditions. We have a strong focus on the impact of surface chemistry on the implant-body interactions and we work closely with a number of collaborators on aspects of cell toxicity and material integration into medical devices.

Research Interests

Our research focusses on the development and utilization of piezoelectric materials in biomedical applications. These materials exhibit the unique characteristic to develop an electric surface charge when mechanical pressure is applied to them. This behavior can provide us with a whole new aspect of functionality for implanted components, e.g. by utilizing the electric signals to improve tissue repair, power implanted electronics or read them out as sensor signal.

In-vitro functionality and stability
Materials utilized as In-vitro biomedical components have to withstand the chemically harsh conditions inside the body and still perform in the desired way. We study the chemical interactions occurring at the solid-liquid interface to clarify their role in chemical and mechanical integrity as well as piezoelectric performance.

Schemiatic of Ion release in NaCl VS days

Ceramic coatings and composites
The performance and reliability of coatings and composites depends both on the functional and the non-functional components and their interfacial properties. Chemical interactions and thermal mismatching during processing, as well as clamping effects within the final product can influence the component’s performance. We study ceramic-substrate interactions for substrates ranging from single crystal SrTiO3 to medical grade metals, as well the interplay between functional ceramics and medical glass-ceramics.

Microstructure

Microstructural optimization
Microstructural features such as grain size and orientation, porosity and pore morphology have significant impact on the dielectric, piezoelectric and mechanical properties of bulk ceramics and coatings. We are developing components with microstructures optimized for cell ingrowth and evaluate their functional performance.

Microstructure.

    Microstructure.

For the preparation of our materials, we are making use of the general pool of processing tools and structural as well as microstructural characterization equipment available within FACET. For more specialized processing and characterization of functional biomaterials, we utilize the following:

Processing equipment:

  • Freeze casting setup
  • Freeze dryer

Functional characterization:

  • Dielectric and piezoelectric testing of film and bulk samples
  • Temperature-dependent dielectric spectroscopy with high voltage option
  • Corona discharge poling setup

Surface and interface characterization:

  • Wetting angle
  • Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS)
  • Focused Ion Beam (FIB)
  • Atom Probe Tomography (ATP)

D. Menne, L. Lemos da Silva, M. Rotan, J. Glaum, M. Hinterstein and N. Willenbacher
Giant functional properties in porous electroceramics through additive manufacturing of capillary suspensions
itle ACS Appl. Mater. Interfaces 14 (2022) 2

K.Bakken, N.H.Gaukås, O.G.Grendal ,A.B.Blichfeld, S.Tominaka, K.Ohara, D.Chernyshov, J.Glaum, T.Grande and M.-A.Einarsrud
In situ X-ray diffraction studies of the crystallization of K0.5Na0.5NbO3 powders and thin films from an aqueous synthesis route
Open Ceramics 7 (2021) 100147

T. M. Raeder, T. S. Holstad, I.-E. Nylund, M.-A. Einarsrud, J. Glaum, D. Meier and T. Grande
Anisotropic in-plane dielectric and ferroelectric properties of tensile-strained BaTiO3 films with three different crystallographic orientations
AIP Adv. 11 (2021) 025016

M. M. Adnan, I.-E. Nylund, A. Jaworski, S. Hvidsten, M.-H. G. Ese, J. Glaum and M.-A. Einarsrud
The Structure, Morphology, and Complex Permittivity of Epoxy Nanodielectrics with In Situ Synthesized Surface-Functionalized SiO2
Polymers 13 (2021) 1469

T. Frömling, Y. Liu, A.-P. Hoang, M. Gehringer, S. Steiner, M. Zhuk, J. Glaum and B.-X. Xu,
Modulus spectroscopy for the detection of parallel electric responses in electroceramics
J. Materiomics (2021)

P. Pomyai, D. Munthala, T. Sonklin, R. Supruangnet, P. Janphuang, S. M. Dale, J. Glaum and S. Pojprapai
Electrical fatigue behavior of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics under different oxygen concentrations
J. Eur. Ceram. Soc. (2021)

M. Rotan, M. Zhuk, P. Boughton and J. Glaum
The influence of low-temperature sterilization procedures on piezoelectric ceramics for biomedical applications
Open Ceramics (2021)

K.K Poon, S. Schaffoner, M.-A. Einarsrud and J. Glaum
Barium titanate-based bilayer functional coatings on Ti alloy biomedical implants
J. Eur. Ceram. Soc. 41 (2021) 2918-2922

N. H. Gaukås, Q.-S. Huynh, A. A. Pratap, M.-A. Einarsrud, T. Grande, R. M. D. Holsinger and J. Glaum
In Vitro Biocompatibility of Piezoelectric K0.5Na0.5NbO3 Thin Films on Platinized Silicon Substrates
ACS Appl. Bio Mater. (2020)

M. Rotan, M. Zhuk and J. Glaum
Activation of ferroelectric implant ceramics by corona discharge poling
J. Eur. Ceram. Soc. 40 (2020) 5402-5409.

E. Khomyakova, S. Wenner, K. Bakken, J. Schultheiß, T. Grande, J. Glaum and M.-A. Einarsrud
On the formation mechanism of Ba0.85Ca0.15Zr0.1Ti0.15O3 thin films by aqueous chemical solution deposition
J. Eur. Ceram. Soc. 40 (2020) 5376-5383.

N. H. Gaukås, J. Glaum, M.-A. Einarsrud and T. Grande
Ferroelectric and dielectric properties of Ca2+-doped and Ca2+-Ti4+ co-doped K0.5Na0.5NbO3 thin films
J. Mater. Chem. C (2020).

K. K. Poon, M. C. Wurm, D. M. Evans, M.‐A. Einarsrud, R. Lutz and Julia Glaum
Biocompatibility of (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics for bone replacement materials
J. Biomed. Mater. Res., Part B (2019) 1-9.

N. H. Gaukås, S. M. Dale, T. M. Ræder, A. Toresen, R. Holmestad, J. Glaum, M.-A. Einarsrud and T. Grande
Controlling Phase Purity and Texture of K0.5Na0.5NbO3 Thin Films by Aqueous Chemical Solution Deposition
Materials 12 (2019) 2042.

K.-N. Pham, N. H. Gaukås, M. Morozov, T. Tybell, P. E. Vullum, T. Grande and M.-A. Einarsrud
Epitaxial K0.5Na0.5NbO3 thin films by aqueous chemical solution deposition
R. Soc. Open Sci. 6 (2019) 180989.

E. W. Yap, J. Glaum, J. Oddershede and J. E. Daniels
Effect of porosity on the ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics
Scr. Mater. 145 (2018) 122-125.

O. Namsar, C. Uthaisar, J. Glaum and S. Pojprapai
Orthorhombic-tetragonal phase transition induced by Ta isovalent doping and its effect on the fatigue characteristics of KNL-NSTx ceramics
Ceram. Int. 44 (2018) 1526-1533.

L. M. Denis, J. E. Daniels, M. Hoffman, J. Glaum, R. J. Hooper, G. Tutuncu, J. S. Forrester and J. L. Jones
Effect of mechanical depoling on piezoelectric properties of Na0.5Bi0.5TiO3–xBaTiO3 in the morphotropic phase boundary region
J. Mater. Sci. 53 (2018) 1672–1679.

N. H. Khansur, J. Glaum, O. Clemens, H. Zhang, J. E. Daniels and K. G. Webber
Uniaxial compressive stress and temperature dependent mechanical behavior of (1-x)BiFeO3-xBaTiO3 lead-free piezoelectric ceramics
Ceram. Int. 43 (2017) 9092-9098.

S. Zhukow, J. Glaum, H. Kungl, E. Sapper, R. Dittmer, Y. A. Genenko and H. von Seggern
Fatigue effect on polarization switching dynamics in polycrystalline bulk ferroelectrics
J. Appl. Phys. 120 (2016) 064103.

M. Acosta, L. A. Schmitt, C. Cazorla, A. Studer, A. Zintler, J. Glaum, H.-J. Kleebe, W. Donner, M. Hoffman, J. Rödel and M. Hinterstein
Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics
Sci. Rep. 6 (2016) 28742. 

Alumni

Postdocs/Researchers

2017 – 2021 Dr. Magnus Rotan

2017 – 2019 Dr. Evgeniya Khomyakova

PhD students

2016 – 2020 Dr. Kara Poon

2016 – 2020 Dr. Nikolai Helth Gaukås

2016 - 2021 Mikalai Zhuk

Master students

2022/23

Kyrre Ryan Øye and Vetle Holum

2021/22

Lise Fagnan and Martha Seim Gunstad

2020/21

Eline Gridset, Angelica Marie Maza Larsen and Marcus Bentzen

2019/20

Marcus Oskar Heggen Solum

2018/19

Freya Andersen

2016/17

Karianne Skaar Fedje

2015/16

Mari Berge Ommedal

Guests

2022

Vojtěch Lindauer - Technical University of Liberec, Czech Republic

Prof. Pierre-Eymeric Janolin - CentraleSupélec, France

2021

Vojtěch Lindauer - Technical University of Liberec, Czech Republic

Prof. Vilém Bartůněk - University of Chemistry and Technology Prague, Czech Republic

2020

David Menne, Karlsruhe Institute of Technology, Germany

2019

Prof. Pavel Mokrý, Technical University of Liberec, Czech Republic

Prof. Stefan Schafföner, Universität Bayreuth, Germany

Louis Guinamard, Institut National Polytechnique de Toulouse, France

Elvira Garcia Morals, Universidad de Valladolid, Spain

2018

Prof. Karel Maca, Dr Klára Částková & Tomas Spusta, CEITEC, Czech Republic

Dr. Judy Hart, UNSW Sydney, Australia

2017

Karin Karkuszová, CEITEC, Czech Republic

 

person-portlet

Marcus Hoseth Bentzen
PhD Candidate
marcus.bentzen@ntnu.no
+4791198472
Mari-Ann Einarsrud
Professor
mari-ann.einarsrud@ntnu.no
+4748136521
Julia Glaum
Professor
julia.glaum@ntnu.no
+47-73593983
Tor Grande
Rector
rektor@ntnu.no
Caitlin M. Guzzo
PhD Candidate
caitlin.guzzo@ntnu.no
Mohsen Sadeqi Moqadam
Research Assistant and Simulation Engineer
mohsen.sadeqi-moqadam@ntnu.no
+47Tel:46554586

ContactBio

Contact

Julia Glaum. Photo

Professor Julia Glaum
julia.glaum@ntnu.no
+47 73 59 39 83

 

 


HighlightsBio

 

Photo: Thor Nielsen/NTNU

Assoc. Prof. Julia Glaum was selected for the Outstanding Academic Fellow Program (2017-2021)

Mari-Ann Einarsrud, Julia Glaum and Tor Grande received the NANO2021 project PIEZOMED (2016)

Julia Glaum won a Young Research Talent Grant (2016)


Selected publications

K. K. Poon et. al., Biocompatibility of (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics for bone replacement materials, J. Biomed. Mater. Res., Part B (2019) 1-9.

N. H. Gaukås et. al., Controlling Phase Purity and Texture of K0.5Na0.5NbO3 Thin Films by Aqueous Chemical Solution Deposition, Materials 12 (2019) 2042.