Johann Riemensberger
About
I studied physics at the Technical University of Munich (TUM). For my diploma thesis, I joined Tobias Kippenberg at the Swiss Federal Institute of Technology Lausanne (EPFL), where I pioneered and established the Si3N4-based nonlinear integrated photonics platform for frequency comb generation. After my Physics diploma degree (hons.), I returned to his alma mater TUM and his mentor Reinhard Kienberger to pursue a PhD in attosecond physics in August 2012 to perform experiments at the solid-state attosecond photoemission beamline with resuting publications in Nature and PRL. Since February 2019, I have been a postdoctoral scholar in Prof. Tobias Kippenberg’s Laboratory of Photonics and Quantum Measurements at EPFL, Switzerland. I have demonstrated novel approaches for massively parallel coherent laser ranging using soliton microcombs, optical coherence tomography and integrated photonic circuit based parametric amplifiers. I am recipient of a Marie Skłodowska-Curie Individual Fellowship from the European Commission and an Ambizione Fellowship of the Swiss National Science Foundation. Currently, I have been warded Onsager Fellowship and Associate Professor position at the Norwegian University of Science and Technology (NTNU).
Research
Optical parametric amplification:
Optical amplifiers are cornerstone components for optical systems as they allow to increase the transmission span of information along optical fiber links or to amplify weak signals above the thermal noise floor of optical detectors. The adoption of rare-earth doped fiber amplifiers has unlocked the optical spectrum for data transmission via wavelength-division multiplexing and since then has physically become the backbone of the modern internet. However, doped fiber amplifiers only address a fraction of the optical transparency window of modern and future optical fibers, require optical isolators to impose forward propagation of signals, and are incompatible with quantum light source technologies. The ideal optical amplifier would be compact, electrically pumped, highly efficient, ultra-broadband, and operate unidirectionally with high saturation power. The mechanism of optical amplification that can simultaneously fulfill all these requirements is a traveling-wave optical parametric amplifier that use the intrinsic material nonlinearities of transparent media to amplify weak signals and generate a phase conjugate idler. During my research at EPFL, we have pioneered photonic integrated waveguides for parametric amplification made of silicon nitride and gallium phosphide that exhibit tighter confinement and have higher Kerr nonlinearity have surpassed the threshold for fiber-to-fiber net gain on compact chip substrates. Future nonlinear optical amplification systems will be based on new materials with the aim to reduce the pump powers to a level below 500 mW that is commensurable with integrating a pump laser diode in a compact amplifier package.
Quantum light sources:
Optical parametric amplifiers are cornerstone systems for quantum light sources of squeezed and entangled light sources and heralded photon pairs. The advent of thin film ferroelectric waveguide technology has opened new doors for emerging technologies in the field of quantum light sources such as broadband bright squeezed vacuum states that are opening new opportunities to scale the performance of spectroscopy and imaging applications beyond the limits of classical photonics. As platforms for ultrafast nonlinear photonics continue to mature, an extraordinary number of new possibilities emerge. The generation of bright squeezed vacuum states so far has been limited to either large mode area waveguides without dispersion engineering light sources or pulsed lasers. A special application of quantum-enhanced sensing is the so-called SU(1,1) interferometers, which can achieve measurement sensitivities below the standard quantum limit using cascaded nonlinear interactions in nonlinear crystals, allowing applications including optical spectroscopy and optical coherence tomography with undetected mid-infrared photons. Achieving broadband (>500 nm) bright squeezed vacuum states with continuous wave pump light has not been achieved so far only recently using pulsed lasers, nor has the photonic integration of the nonlinear optical waveguide with a high power pump laser, which is required to translate quantum light sources from the lab into the field.
Publications
Publications at NTNU:
[1] Ultrafast tunable photonic integrated Pockels extended-DBR laser, A. Siddharth, S. Bianconi, R.N. Wang, Z.Qiu, A.S. Voloshin, M.J. Bereyhi, J. Riemensberger, T.J. Kippenberg, arXiv:2408.01743 (2024)
Publications prior to joining NTNU:
[1] Voltage-tunable OPO with an alternating dispersion dimer integrated on chip, D. Pidgaiko, A. Tusnin, J. Riemensberger, A. Stroganov, A. Tikan, T.J. Kippenberg, Optica 10,11 1582-1586 (2023)
[2] Chaotic microcomb inertia-free parallel ranging, A. Lukashchuk, J. Riemensberger, A. Stroganov, G. Navickaite, T. J. Kippenberg, APL Photonics 8, 056102 (2023)
[3] Ultrafast tunable lasers using lithium niobate integrated photonics, V. Snigirev, A. Riedhauser, G. Lihachev, J. Riemensberger, R.N. Wang, C. Möhl, M. Churaev, A. Siddharth, G. Huang, Y. Popoff, U. Drechsler, D. Caimi, S. Hönl, J. Liu, P. Seidler, T.J. Kippenberg, Nature 615, 411–417 (2023)
[4] Chaotic micro-comb based parallel ranging, A. Lukashchuk, J. Riemensberger, A. Tusnin, J. Liu, T.J. Kippenberg, Nature Photonics 17,814–821 (2023)
[5] Dissipative solitons and switching waves in dispersion folded Kerr cavities, M.H. Anderson, A. Tikan, A. Tusnin, J. Riemensberger, R.N. Wang, T.J. Kippenberg, Physical Review X 13,011040 (2023)
[6] A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform, M. Churaev, A. Riedhauser, R.N. Wang, C. Möhl, T. Blésin, M.A. Anderson, V. Snigirev, A. Siddharth, Y. Popoff, D. Caimi, S. Hönl, J. Riemensberger, J. Liu, P. Seidler, T.J. Kippenberg, Nature Communications, 14,3499 (2023)
[7] High-density lithium niobate photonic integrated circuits, Z. Li, R.N. Wang, G. Lihachev, Z. Tan, V. Snigirev, M. Churaev, N. Kuznetsov, A. Siddharth, M.J. Bereyhi, J. Riemensberger, T.J. Kippenberg Nature Communications 14,4856 (2023)
[8] A photonic integrated continuous-travelling-wave parametric amplifier, J. Riemensberger, N. Kusnetzov, J. Liu, J. He, R.N. Wang, T.J. Kippenberg, Nature 612, 56–61 (2022),
[9] Low-noise frequency-agile photonic integrated lasers for coherent ranging, G. Lihachev*, J. Riemensberger*, W. Weng*, J. Liu, H. Tian, A. Siddharth, V. Snigirev, R.N. Wang, J. He, S.A. Bhave, T.J. Kippenberg, Nature Communications 13, 1 (2022)
[10] Dual chirped microcomb-based parallel ranging at megapixel-line rates, A. Lukashchuk, J. Riemensberger, M. Karpov, J. Liu, T.J. Kippenberg, Nature Communications 13, 1 (2022)
[11] Near ultraviolet photonic integrated lasers based on silicon nitride, A. Siddharth, T. Wunderer, G. Lihachev, A.S. Voloshin, C. Haller, R.N. Wang, M. Teepe, Z. Yang, J. Liu, J. Riemensberger, N. Grandjean, N. Johnson, T.J. Kippenberg APL Photonics 7, 4 (2022)
[12] A photonic integrated circuit–based erbium-doped amplifier, Y. Liu*, Z. Qiu*, X. Yi, A. Lukashchuk, J. Riemensberger, M. Hafermann, R. N. Wang, C. Ronning, T.J. Kippenberg, Science 376, 6599 (2022)
[13] Protected generation of dissipative Kerr solitons in supermodes of coupled optical microresonators, A. Tikan, A. Tusnin, J. Riemensberger, M. Churaev, X. Ji, K.N. Komagata, R.N. Wang, J. Liu, T.J. Kippenberg, Science Advances 8, 13 (2022)
[14] Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits, X. Ji, J. Liu, J. He, R.N. Wang, Z. Qiu, J. Riemensberger, T.J. Kippenberg, Communications Physics 8, 13 (2022)
[15] Dissipative Kerr solitons in a photonic dimer on both sides of the exceptional point, K. Komagata, A. Tusnin, J. Riemensberger, M. Churaev, H. Guo, A. Tikan, T. J. Kippenberg, Communications Physics 4, 159 (2021)
[16] Laser soliton microcombs heterogeneously integrated on silicon, C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T.J. Kippenberg, J.E. Bowers, Science 373, 99-103 (2021)
[17] Soliton microcomb based spectral domain optical coherence tomography, P. Marchand, J.C. Skehan, J. Riemensberger, J.-J. Ho, M.H.W. Pfeiffer, J. Liu, C. Hauger, T. Lasser, T.J. Kippenberg, Nature Communications 12, 427 (2021)
[18] Emergent Nonlinear Phenomena in a Driven Dissipative Photonic Dimer, A. Tikan, J. Riemensberger, K. Komagata, S. Hönl, M. Churaev, C. Skehan, H. Guo, R. N. Wang, J. Liu, P. Seidler, T. J. Kippenberg, Nature Physics 17,604-610 (2021)
[19] Massively parallel coherent laser ranging using soliton microcombs, J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E. Lucas, J. Liu, T.J. Kippenberg, Nature 581, 164-170 (2020)
[20] Photonic microwave generation in the X- and K-band using integrated soliton microcombs, J. Liu , E. Lucas, A. Raja, J. He, J. Riemensberger, R.N. Wang, M. Karpov, H. Guo, R. Bouchand, T.J. Kippenberg, Nature Photonics 8 468-491 (2020)
[21] Understanding laser desorption with circularly polarized light, F. Ristow, J. Scheffel, X. Xu, N. Fehn, K. E. Oberhofer, J. Riemensberger, F. Mortaheb, R. Kienberger, U. Heiz, A. Kartouzian, H. Iglev, Chirality 32, 12, pp. 1341-1353 (2020)
[22] Attosecond Dynamics of sp-band Photoemission, J. Riemensberger, S. Neppl, D. Potamianos, M. Schäffer, M. Schnitzenbaumer, M. Ossiander, A. Guggenmos, U. Kleineberg, P. M. Echenique, F. Allegretti, D. Menzel, J. Barth, A. G. Borisov, A. K. Kazansky, R. Kienberger, and P. Feulner, Phys. Rev. Lett. 123, 176801 (2019)
[23] Enantiospecific Desorption Triggered by Circularly Polarized Light, F. Mohateb, K. Oberhofer, J. Riemensberger, F. Ristow, R. Kienberger, U. Heiz, H. Iglev, A. Kartouzian, Angewandte Chemie 58, 44 15685-15689 (2019)
[24] Few-Femtosecond Wave Packet Revivals in Ozone, T. Latka, V. Shirvanyan, M. Ossiander, O. Razskazovskaya, A. Guggenmos, M. Jobst, M. Fieß, S. Holzner, A. Sommer, M. Schultze, C. Jakubeit, J. Riemensberger, B. Bernhardt, W. Helml, F. Gatti, B. Lasorne, D. Lauvergnat, P. Decleva, G. J. Halász, Á. Vibók, and R. Kienberger, Phys. Rev. A 99, 063405 (2019)
[25] Absolute Timing of the Photoelectric Effect, M. Ossiander*, J. Riemensberger*, S. Neppl, M. Mittermair, M. Schäffer, A. Duensing, M. S. Wagner, R. Heider, M.Wurzer, M. Gerl, M. Schnitzenbaumer, J.V. Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner, R. Kienberger, Nature 561, 374-378 (2018)
[26] Ultrafast quantum control of ionization dynamics in krypton, K. Hütten, M. Mittermair, S. O. Stock, R. Beerwerth, V. Shirvanyan, J. Riemensberger, A. Duensing, R. Heider, M. S. Wagner, A. Guggenmos, S. Fritzsche, N.M. Kabachnik, R. Kienberger, and B. Bernhardt, Nature Communications 9, 719 (2017)
[27] Chromium/scandium multilayer mirrors for isolated attosecond pulses at 145 eV, A. Guggenmos, M. Jobst, M. Ossiander, S. Radünz, J. Riemensberger, M. Schäffer, A. Akil, C. Jakubeit, P. Böhm, S. Noever, B. Nickel, R. Kienberger, and U. Kleineberg, Optics Letters 40, 12, pp. 2846 (2015)
[28] Dynamics of Kerr Frequency Comb Formation in Microresonators, T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, Nature Photonics 6, 480-487 (2012)
[29] Dispersion engineered high-Q silicon Nitride Ring-Resonators via Atomic Layer Deposition, J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, T.J. Kippenberg, Optics Express 20, 25, pp. 27661-27669 (2012)