Navigation

  • Skip to Content
NTNU Home NTNU Home

ntnu.edu

  • Studies
    • Master's programmes in English
    • For exchange students
    • PhD opportunities
    • All programmes of study
    • Courses
    • Financing
    • Language requirements
    • Application process
    • Academic calendar
    • FAQ
  • Research and innovation
    • NTNU research
    • Research excellence
    • Strategic research areas
    • Innovation resources
    • PhD opportunities
  • Life and housing
    • Student in Trondheim
    • Student in Gjøvik
    • Student in Ålesund
    • For researchers
    • Life and housing
  • About NTNU
    • Contact us
    • Faculties and departments
    • Libraries
    • International researcher support
    • Vacancies
    • About NTNU
    • Maps
  1. Employees

Språkvelger

Norsk

Idelfonso Nogueira

Download press photo
Download press photo
Foto:

Idelfonso Nogueira

Associate Professor
Department of Chemical Engineering

idelfonso.b.d.r.nogueira@ntnu.no
+4773592399 Kjemi 4, 232, Gløshaugen
ResearchGate Scopus Google Scholar
About Publications Teaching Outreach

About

 

Research

I seek to promote synergy between new technologies and classical strategies for developing disruptive solutions to face modern society's challenges, focusing on merging artificial intelligence, advanced control, systems optimization, digitalization and automation. My research has four main branches working together to promote a new and sustainable industry. I call the synergy between these branches, AiP2S2 (Artificial Intelligence-powered Products, Processes, Scales and Systems). I can briefly list them as follows:

  • Developing products: This branch seeks to develop new products using the Process Systems Engineering perspective. The main question is: How can Artificial Intelligence and Control theory be used to prospect new product solutions never seen before?
  • Operating processes: This branch addresses two main questions. The first one is: How can Artificial Intelligence be developed in an interpretable, robust and reliable way to help Process System Engineering in an Industry 4.0/5.0 scenario? The second question is: How can we combine Systems Control, Optimization and Artificial Intelligence while guaranteeing stability, robustness and stable integration?
  • Bridging scales: This branch develops a new way to observe the system—a way to consider the phenomena and the process in the same frame. Thus, the main question here is: How to integrate the processes' fundamental, design and operating scales to optimize and control both simultaneously?
  • Connecting systems: We live in a dynamic society that requires solutions for its challenges in time. How can the industry quickly adapt to face these challenges? This is the question that we want to solve at this branch.

I see multidisciplinarity and collaboration with other fields and perspectives as essential to developing these research branches. In this way, I m collaborating with several universities, institutes and industries worldwide. Furthermore, I am also pursuing the promotion of innovative teaching activities to prepare future engineers to face the Industry 4.0/5.0 challenges.

Educational background

  • 2018 - Ph.D. in Chemical and Biological Engineering Faculty of Engineering,  Department of Chemical Engineering, University of Porto, Portugal.
  • 2016-2018 - Visiting Ph.D. researcher, Tampere University of Technology, Department of Automation Science and Engineering, Finland.
  • 2016 - Master in Industrial Engineering, Postgraduation Program in Industrial Engineering, Federal University of Bahia, Brazil.
  • 2012 - Master in Chemical, Engineering Faculty of Engineering, Department of Chemical Engineering, University of Porto, Portugal.

Competencies

  • Applied Artificial Intelligence
  • Digital twins
  • Hybrid modelling
  • Optimization
  • Process System Engineering
  • Process control

Publications

I have published over 60 manuscripts, ∼70% in Q1 Scimago rank and ∼25% in Q2 Scimago rank. 2 book chapters— 490 citations, h-index: 12 (source GoogleScholar).

·         List of selected publications:

 

[1]           I.B.R. Nogueira, R.O.M. Dias, C.M. Rebello, E.A. Costa, V. V. Santana, A.E. Rodrigues, A. Ferreira, A.M. Ribeiro, A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization, Chem. Eng. Res. Des. 180 (2022) 243–253. doi:10.1016/j.cherd.2022.02.013.

[2]         M.P. Silva, A.M. Ribeiro, C.G. Silva, G. Narin, I.B.R. Nogueira, U.H. Lee, J.L. Faria, J.M. Loureiro, J.S. Chang, A.E. Rodrigues, A. Ferreira, Water vapor harvesting by a (P)TSA process with MIL-125(Ti)_NH2 as adsorbent, Sep. Purif. Technol. 237 (2020). doi:10.1016/j.seppur.2019.116336.

[3]         M.J. Regufe, V. V. Santana, M.M. Martins, A.F.P. Ferreira, J.M. Loureiro, A.E. Rodrigues, A.M. Ribeiro, I.B.R. Nogueira, Adsorption material composition and process optimization, a systematical approach based on Deep Learning, IFAC-PapersOnLine. 54 (2021) 43–48. doi:10.1016/j.ifacol.2021.08.216.

[4]          I. B. R. Nogueira, V. V. Santana, A.M. Ribeiro, A.E. Rodrigues, Using scientific machine learning to develop universal differential equation for multicomponent adsorption separation systems, Can. J. Chem. Eng. 100 (2022) 2279–2290. doi:10.1002/cjce.24495.

[5]         V. V. Santana, M.A.F. Martins, J.M. Loureiro, A.M. Ribeiro, A.E. Rodrigues, I.B.R. Nogueira, Optimal fragrances formulation using a deep learning neural network architecture: A novel systematic approach, Comput. Chem. Eng. 150 (2021) 107344. doi:10.1016/j.compchemeng.2021.107344.

[6]         M.A.F. Martins, A.E. Rodrigues, J.M. Loureiro, A.M. Ribeiro, I.B.R. Nogueira, Artificial Intelligence-oriented economic non-linear model predictive control applied to a pressure swing adsorption unit: Syngas purification as a case study, Sep. Purif. Technol. 276 (2021) 119333. doi:10.1016/j.seppur.2021.119333.

[7]         Luana P Queiroz, Carine M Rebello, Erbet A Costa, Vinícius V Santana, Bruno CL Rodrigues, Alírio E Rodrigues, Ana M Ribeiro, Idelfonso BR Nogueira, A Reinforcement Learning Framework to Discover Natural Flavor Molecules, Foods. 12 (2023). doi: 10.3390/foods12061147.

[8]         L.P. Queiroz, C.M. Rebello, E.A. Costa, V. V. Santana, B.C.L. Rodrigues, A.E. Rodrigues, A.M. Ribeiro, I.B.R. Nogueira, Generating favours molecules using scientific machine learning, (2022). doi: 10.1021/acsomega.2c07176.

[9]         I.B.R. Nogueira, R.M. Fontes, A.M. Ribeiro, K.V. Pontes, M. Embiruçu, M.A.F. Martins, A robustly model predictive control strategy applied in the control of a simulated industrial polyethylene polymerization process, Comput. Chem. Eng. 133 (2020). doi:10.1016/j.compchemeng.2019.106664.

[10]      C.M. Rebello, M.A.F. Martins, J.M. Loureiro, A.E. Rodrigues, A.M. Ribeiro, I.B.R. Nogueira, From an Optimal Point to an Optimal Region: A Novel Methodology for Optimization of Multimodal Constrained Problems and a Novel Constrained Sliding Particle Swarm Optimization Strategy, Mathematics. 9 (2021) 1808. doi:10.3390/math9151808.

  • Chronological
  • By category
  • See all publications in Cristin

2024

  • Mendes, Teófilo Paiva Guimarães; Ribeiro, Ana Mafalda; Schnitman, Leizer; B. R. Nogueira, Idelfonso. (2024) A PLC-Embedded Implementation of a Modified Takagi–Sugeno–Kang-Based MPC to Control a Pressure Swing Adsorption Process. Processes
    Academic article
  • Sanchez, Antonio; Bessa Dos Reis Nogueira, Idelfonso. (2024) Nutrient recovery in wastewater treatment plants through biosolids and struvite precipitation: Case study in Panama City. Cleaner Water
    Academic article
  • Almeida Costa, Erbet; Skogestad, Sigurd; B. R. Nogueira, Idelfonso. (2024) NC-SIMC: Neuro-Controller Simple Internal Model Control. IFAC-PapersOnLine
    Academic article
  • Almeida Costa, Erbet; de Menezes Rebello, Carine; Santana, Vinicius Viena; B. R. Nogueira, Idelfonso. (2024) Machine learning multi-step-ahead modelling with uncertainty assessment. IFAC-PapersOnLine
    Academic article
  • de Menezes Rebello, Carine; Almeida Costa, Erbet; Sánchez, Antonio Santos; Vides, Fredy; B. R. Nogueira, Idelfonso. (2024) Assuring optimality in surrogate-based optimization: A novel theorem and its practical implementation in pressure swing adsorption optimization. Canadian Journal of Chemical Engineering
    Academic article
  • Santana, Vinícius V.; Carmo, Paulo; Seabra, Rute; Rodrigues, Alírio E.; Ribeiro, Ana Mafalda; B. R. Nogueira, Idelfonso. (2024) Ethylene Purification by Pressure Swing Adsorption with the Paraffin Selective Metal-Organic Framework─DUT-8. Industrial & Engineering Chemistry Research
    Academic article
  • Queiroz, L.P.; B. R. Nogueira, Idelfonso; Ribeiro, A.M.. (2024) Flavor Engineering: A comprehensive review of biological foundations, AI integration, industrial development, and socio-cultural dynamics. Food Research International
    Academic literature review
  • Rodrigues, Bruno; Santana, Vinicius Viena; Murins, Sandris; B. R. Nogueira, Idelfonso. (2024) Molecule Generation and Optimization for Efficient Fragrance Creation. Industrial & Engineering Chemistry Research
    Academic article
  • Rodrigues, Bruno; Santana, Vinicius Viena; Queiroz, Luana P.; de Menezes Rebello, Carine; B. R. Nogueira, Idelfonso. (2024) Harnessing graph neural networks to craft fragrances based on consumer feedback. Computers and Chemical Engineering
    Academic article
  • de Menezes Rebello, Carine; Deiró, Gabriela Fontes; Knuutila, Hanna Katariina; Moreira, Lorena Claudia de Souza; B. R. Nogueira, Idelfonso. (2024) Augmented reality for chemical engineering education. Education for Chemical Engineers
    Academic article
  • de Menezes Rebello, Carine; B. R. Nogueira, Idelfonso. (2024) Optimizing CO2 capture in pressure swing adsorption units: A deep neural network approach with optimality evaluation and operating maps for decision-making. Separation and Purification Technology
    Academic article
  • Santana, Vinicius; Rebello, Carine Menezes; Queiroz, Luana P.; Ribeiro, Ana Mafalda; Shardt, Nadia; B. R. Nogueira, Idelfonso. (2024) PUFFIN: A path-unifying feed-forward interfaced network for vapor pressure prediction. Chemical Engineering Science (CES)
    Academic article
  • Costa, Erbet Almeida; Rebello, Carine Menezes; Schnitman, Leizer; Loureiro, José Miguel; Ribeiro, Ana Mafalda; B. R. Nogueira, Idelfonso. (2024) Adaptive digital twin for pressure swing adsorption systems: Integrating a novel feedback tracking system, online learning and uncertainty assessment for enhanced performance. Engineering Applications of Artificial Intelligence
    Academic article
  • Prudente, Anderson N.; Santos, Rodrigo V.A.; Ribeiro, Ana M.; Pontes, Karen V.; B. R. Nogueira, Idelfonso. (2024) An integrated approach for parameter estimation of a propyl propionate synthesis model. Chemical engineering research & design
    Academic article
  • Ito Iwakiri, Igor Gabriel; Delgado, Nuno M.; B. R. Nogueira, Idelfonso. (2024) Introducing a new model for solid-state batteries: Parameter estimation and sensitivity analysis on diffusion, concentration, and electrochemical kinetics. Electrochimica Acta
    Academic article
  • Lim, Myung Kyun; Yun, Ji Sub; Cho, Kyung Ho; Yoon, Ji Woong; Lee, U-Hwang; Ferreira, Alexandre. (2024) Multi-objective optimization of ANN-based vacuum pressure swing adsorption process for ethane and ethylene separation. Journal of Industrial and Engineering Chemistry
    Academic article
  • de Menezes Rebello, Carine; Almeida Costa, Erbet; Fontana, Marcio; Schnitman, Leizer; B. R. Nogueira, Idelfonso. (2024) Interpretable Scientific Machine Learning Approach for Correcting Phenomenological Models: Methodology Validation on an ESP Prototype. Industrial & Engineering Chemistry Research
    Academic article
  • Souza Lima, Patrick; Almeida Costa, Erbet; Mendes, Teófilo Paiva Guimarães; Schnitman, Leizer; Skogestad, Sigurd; Bessa Dos Reis Nogueira, Idelfonso. (2024) Simple control structure for stabilizing Core Annular Flow operation in heavy oil transportation. Computers and Chemical Engineering
    Academic article
  • Costa, Erbet Almeida; Rebello, Carine Menezes; Santana, Vinicius Viena; Reges, Galdir; de Oliveira Silva, Tiago; Santana Luiz de Abreu, Odilon. (2024) An uncertainty approach for Electric Submersible Pump modeling through Deep Neural Network. Heliyon
    Academic article
  • Moreira, Lorena Claudia de Souza; de Menezes Rebello, Carine; Almeida Costa, Erbet; Sánchez, Antonio Santos; Ribeiro, Lucília S.; B. R. Nogueira, Idelfonso. (2024) Digital Transformation in the Chemical Industry: The Potential of Augmented Reality and Digital Twin. Applied Sciences
    Academic literature review

2023

  • Oliveira, Luis M.C.; Santana, Vinícius V.; Rodrigues, Alírio E.; Ribeiro, Ana M.; B. R. Nogueira, Idelfonso. (2023) A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning. Heliyon
    Academic article
  • Lima, Fernando; Rebello, Carine Menezes; Costa, Erbet Almeida; Santana, Vinicius; Moares, Marcellus; Barreto, Amaro. (2023) Improved modeling of crystallization processes by Universal Differential Equations . Chemical engineering research & design
    Academic article
  • Santana, Vinicius V.; Costa, Erbet Almeida; Rebello, Carine Menezes; Ribeiro, Ana Mafalda; Rackauckas, Christopher; B. R. Nogueira, Idelfonso. (2023) Efficient hybrid modeling and sorption model discovery for non-linear advection-diffusion-sorption systems: A systematic scientific machine learning approach. Chemical Engineering Science (CES)
    Academic article
  • Santos, Rodrigo V. A.; Rebello, Carine; Prudente, Anderson; Santana, Vinicius V.; Ferreira, Alexandre F. P.; Ribeiro, Ana M.. (2023) Strategies for Simulated Moving Bed Model Parameter Estimation Based on Minimal System Minimal Knowledge: Adsorption Isotherm Equation Screening and Estimability Analysis. Industrial & Engineering Chemistry Research
    Academic article
  • Sánchez, Antonio Santos; Junior, Euripedes Pontes; Gontijo, Bernardo Machado; de Jong, Pieter; B. R. Nogueira, Idelfonso. (2023) Replacing fossil fuels with renewable energy in islands of high ecological value: The cases of Galápagos, Fernando de Noronha, and Príncipe. Renewable and Sustainable Energy Reviews
    Academic literature review
  • Costa, Erbet Almeida; Rebello, Carine de Menezes; Fontana, Márcio; Schnitman, Leizer; B. R. Nogueira, Idelfonso. (2023) A Robust Learning Methodology for Uncertainty-Aware Scientific Machine Learning Models. Mathematics
    Academic article
  • Yun, Ji Sub; Cho, Kyung Ho; Lim, Myung Kyun; Yoon, Ji Woong; Ferreira, Alexandre; Ribeiro, Ana Mafalda. (2023) Process modeling and optimization of vacuum pressure swing adsorption for ethane and ethylene separation using Cu(Qc)<inf>2</inf> MOF. Separation and Purification Technology
    Academic article
  • Silva, Beatriz C.; Rebello, Carine Menezes; Rodrigues, Alírio E.; Ribeiro, Ana M.; Ferreira, Alexandre F. P.; B. R. Nogueira, Idelfonso. (2023) Metaheuristic Framework for Material Screening and Operating Optimization of Adsorption-Based Heat Pumps. ACS Omega
    Academic article
  • Queiroz, Luana P.; Rebello, Carine M.; Costa, Erbet A.; Santana, Vinícius V.; Rodrigues, Bruno C. L.; Rodrigues, Alírio E.. (2023) A Reinforcement Learning Framework to Discover Natural Flavor Molecules. Foods
    Academic article
  • Queiroz, Luana P.; Rebello, Carine M.; Costa, Erbet A.; Santana, Vinícius V.; Rodrigues, Bruno C. L.; Rodrigues, Alírio E.. (2023) Generating Flavor Molecules Using Scientific Machine Learning. ACS Omega
    Academic article
  • Martins, Márcio A.F.; Rodrigues, Alírio E.; Loureiro, José M.; Ribeiro, Ana M.; B. R. Nogueira, Idelfonso. (2023) Handling model uncertainty in control of a pressure swing adsorption unit for syngas purification: A multi-model zone control scheme-based robust model predictive control strategy. Separation and Purification Technology
    Academic article
  • Queiroz, Luana P.; Rebello, Carine Menezes; Costa, Erbet Almeida; Santana, Vinícius V.; Rodrigues, Bruno C. L.; Rodrigues, Alírio E.. (2023) Transfer Learning Approach to Develop Natural Molecules with Specific Flavor Requirements. Industrial & Engineering Chemistry Research
    Academic article
  • de Souza Gama, Marlon; Lima, Fernando Arrais Romero Dias; Santana, Vinícius Viena; B. R. Nogueira, Idelfonso; Tavares, Frederico Wanderley; Barreto Júnior, Amaro Gomes. (2023) A parallel hybrid model for integrating protein adsorption models with deep neural networks. Adsorption
    Academic article
  • Almeida Costa, Erbet; de Menezes Rebello, Carine; Santana, Vinicius Viena; B. R. Nogueira, Idelfonso. (2023) Physics-informed neural network uncertainty assessment through Bayesian inference. IFAC-PapersOnLine
    Academic article

2022

  • Santana, Vinícius V.; Martins, Márcio A. F.; Loureiro, José M.; Ribeiro, Ana M.; Queiroz, Luana P.; Rebello, Carine M.. (2022) Novel Framework for Simulated Moving Bed Reactor Optimization Based on Deep Neural Network Models and Metaheuristic Optimizers: An Approach with Optimality Guarantee. ACS Omega
    Academic article

Journal publications

  • Mendes, Teófilo Paiva Guimarães; Ribeiro, Ana Mafalda; Schnitman, Leizer; B. R. Nogueira, Idelfonso. (2024) A PLC-Embedded Implementation of a Modified Takagi–Sugeno–Kang-Based MPC to Control a Pressure Swing Adsorption Process. Processes
    Academic article
  • Sanchez, Antonio; Bessa Dos Reis Nogueira, Idelfonso. (2024) Nutrient recovery in wastewater treatment plants through biosolids and struvite precipitation: Case study in Panama City. Cleaner Water
    Academic article
  • Almeida Costa, Erbet; Skogestad, Sigurd; B. R. Nogueira, Idelfonso. (2024) NC-SIMC: Neuro-Controller Simple Internal Model Control. IFAC-PapersOnLine
    Academic article
  • Almeida Costa, Erbet; de Menezes Rebello, Carine; Santana, Vinicius Viena; B. R. Nogueira, Idelfonso. (2024) Machine learning multi-step-ahead modelling with uncertainty assessment. IFAC-PapersOnLine
    Academic article
  • de Menezes Rebello, Carine; Almeida Costa, Erbet; Sánchez, Antonio Santos; Vides, Fredy; B. R. Nogueira, Idelfonso. (2024) Assuring optimality in surrogate-based optimization: A novel theorem and its practical implementation in pressure swing adsorption optimization. Canadian Journal of Chemical Engineering
    Academic article
  • Santana, Vinícius V.; Carmo, Paulo; Seabra, Rute; Rodrigues, Alírio E.; Ribeiro, Ana Mafalda; B. R. Nogueira, Idelfonso. (2024) Ethylene Purification by Pressure Swing Adsorption with the Paraffin Selective Metal-Organic Framework─DUT-8. Industrial & Engineering Chemistry Research
    Academic article
  • Queiroz, L.P.; B. R. Nogueira, Idelfonso; Ribeiro, A.M.. (2024) Flavor Engineering: A comprehensive review of biological foundations, AI integration, industrial development, and socio-cultural dynamics. Food Research International
    Academic literature review
  • Rodrigues, Bruno; Santana, Vinicius Viena; Murins, Sandris; B. R. Nogueira, Idelfonso. (2024) Molecule Generation and Optimization for Efficient Fragrance Creation. Industrial & Engineering Chemistry Research
    Academic article
  • Rodrigues, Bruno; Santana, Vinicius Viena; Queiroz, Luana P.; de Menezes Rebello, Carine; B. R. Nogueira, Idelfonso. (2024) Harnessing graph neural networks to craft fragrances based on consumer feedback. Computers and Chemical Engineering
    Academic article
  • de Menezes Rebello, Carine; Deiró, Gabriela Fontes; Knuutila, Hanna Katariina; Moreira, Lorena Claudia de Souza; B. R. Nogueira, Idelfonso. (2024) Augmented reality for chemical engineering education. Education for Chemical Engineers
    Academic article
  • de Menezes Rebello, Carine; B. R. Nogueira, Idelfonso. (2024) Optimizing CO2 capture in pressure swing adsorption units: A deep neural network approach with optimality evaluation and operating maps for decision-making. Separation and Purification Technology
    Academic article
  • Santana, Vinicius; Rebello, Carine Menezes; Queiroz, Luana P.; Ribeiro, Ana Mafalda; Shardt, Nadia; B. R. Nogueira, Idelfonso. (2024) PUFFIN: A path-unifying feed-forward interfaced network for vapor pressure prediction. Chemical Engineering Science (CES)
    Academic article
  • Costa, Erbet Almeida; Rebello, Carine Menezes; Schnitman, Leizer; Loureiro, José Miguel; Ribeiro, Ana Mafalda; B. R. Nogueira, Idelfonso. (2024) Adaptive digital twin for pressure swing adsorption systems: Integrating a novel feedback tracking system, online learning and uncertainty assessment for enhanced performance. Engineering Applications of Artificial Intelligence
    Academic article
  • Prudente, Anderson N.; Santos, Rodrigo V.A.; Ribeiro, Ana M.; Pontes, Karen V.; B. R. Nogueira, Idelfonso. (2024) An integrated approach for parameter estimation of a propyl propionate synthesis model. Chemical engineering research & design
    Academic article
  • Ito Iwakiri, Igor Gabriel; Delgado, Nuno M.; B. R. Nogueira, Idelfonso. (2024) Introducing a new model for solid-state batteries: Parameter estimation and sensitivity analysis on diffusion, concentration, and electrochemical kinetics. Electrochimica Acta
    Academic article
  • Lim, Myung Kyun; Yun, Ji Sub; Cho, Kyung Ho; Yoon, Ji Woong; Lee, U-Hwang; Ferreira, Alexandre. (2024) Multi-objective optimization of ANN-based vacuum pressure swing adsorption process for ethane and ethylene separation. Journal of Industrial and Engineering Chemistry
    Academic article
  • de Menezes Rebello, Carine; Almeida Costa, Erbet; Fontana, Marcio; Schnitman, Leizer; B. R. Nogueira, Idelfonso. (2024) Interpretable Scientific Machine Learning Approach for Correcting Phenomenological Models: Methodology Validation on an ESP Prototype. Industrial & Engineering Chemistry Research
    Academic article
  • Souza Lima, Patrick; Almeida Costa, Erbet; Mendes, Teófilo Paiva Guimarães; Schnitman, Leizer; Skogestad, Sigurd; Bessa Dos Reis Nogueira, Idelfonso. (2024) Simple control structure for stabilizing Core Annular Flow operation in heavy oil transportation. Computers and Chemical Engineering
    Academic article
  • Costa, Erbet Almeida; Rebello, Carine Menezes; Santana, Vinicius Viena; Reges, Galdir; de Oliveira Silva, Tiago; Santana Luiz de Abreu, Odilon. (2024) An uncertainty approach for Electric Submersible Pump modeling through Deep Neural Network. Heliyon
    Academic article
  • Moreira, Lorena Claudia de Souza; de Menezes Rebello, Carine; Almeida Costa, Erbet; Sánchez, Antonio Santos; Ribeiro, Lucília S.; B. R. Nogueira, Idelfonso. (2024) Digital Transformation in the Chemical Industry: The Potential of Augmented Reality and Digital Twin. Applied Sciences
    Academic literature review
  • Oliveira, Luis M.C.; Santana, Vinícius V.; Rodrigues, Alírio E.; Ribeiro, Ana M.; B. R. Nogueira, Idelfonso. (2023) A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning. Heliyon
    Academic article
  • Lima, Fernando; Rebello, Carine Menezes; Costa, Erbet Almeida; Santana, Vinicius; Moares, Marcellus; Barreto, Amaro. (2023) Improved modeling of crystallization processes by Universal Differential Equations . Chemical engineering research & design
    Academic article
  • Santana, Vinicius V.; Costa, Erbet Almeida; Rebello, Carine Menezes; Ribeiro, Ana Mafalda; Rackauckas, Christopher; B. R. Nogueira, Idelfonso. (2023) Efficient hybrid modeling and sorption model discovery for non-linear advection-diffusion-sorption systems: A systematic scientific machine learning approach. Chemical Engineering Science (CES)
    Academic article
  • Santos, Rodrigo V. A.; Rebello, Carine; Prudente, Anderson; Santana, Vinicius V.; Ferreira, Alexandre F. P.; Ribeiro, Ana M.. (2023) Strategies for Simulated Moving Bed Model Parameter Estimation Based on Minimal System Minimal Knowledge: Adsorption Isotherm Equation Screening and Estimability Analysis. Industrial & Engineering Chemistry Research
    Academic article
  • Sánchez, Antonio Santos; Junior, Euripedes Pontes; Gontijo, Bernardo Machado; de Jong, Pieter; B. R. Nogueira, Idelfonso. (2023) Replacing fossil fuels with renewable energy in islands of high ecological value: The cases of Galápagos, Fernando de Noronha, and Príncipe. Renewable and Sustainable Energy Reviews
    Academic literature review
  • Costa, Erbet Almeida; Rebello, Carine de Menezes; Fontana, Márcio; Schnitman, Leizer; B. R. Nogueira, Idelfonso. (2023) A Robust Learning Methodology for Uncertainty-Aware Scientific Machine Learning Models. Mathematics
    Academic article
  • Yun, Ji Sub; Cho, Kyung Ho; Lim, Myung Kyun; Yoon, Ji Woong; Ferreira, Alexandre; Ribeiro, Ana Mafalda. (2023) Process modeling and optimization of vacuum pressure swing adsorption for ethane and ethylene separation using Cu(Qc)<inf>2</inf> MOF. Separation and Purification Technology
    Academic article
  • Silva, Beatriz C.; Rebello, Carine Menezes; Rodrigues, Alírio E.; Ribeiro, Ana M.; Ferreira, Alexandre F. P.; B. R. Nogueira, Idelfonso. (2023) Metaheuristic Framework for Material Screening and Operating Optimization of Adsorption-Based Heat Pumps. ACS Omega
    Academic article
  • Queiroz, Luana P.; Rebello, Carine M.; Costa, Erbet A.; Santana, Vinícius V.; Rodrigues, Bruno C. L.; Rodrigues, Alírio E.. (2023) A Reinforcement Learning Framework to Discover Natural Flavor Molecules. Foods
    Academic article
  • Queiroz, Luana P.; Rebello, Carine M.; Costa, Erbet A.; Santana, Vinícius V.; Rodrigues, Bruno C. L.; Rodrigues, Alírio E.. (2023) Generating Flavor Molecules Using Scientific Machine Learning. ACS Omega
    Academic article
  • Martins, Márcio A.F.; Rodrigues, Alírio E.; Loureiro, José M.; Ribeiro, Ana M.; B. R. Nogueira, Idelfonso. (2023) Handling model uncertainty in control of a pressure swing adsorption unit for syngas purification: A multi-model zone control scheme-based robust model predictive control strategy. Separation and Purification Technology
    Academic article
  • Queiroz, Luana P.; Rebello, Carine Menezes; Costa, Erbet Almeida; Santana, Vinícius V.; Rodrigues, Bruno C. L.; Rodrigues, Alírio E.. (2023) Transfer Learning Approach to Develop Natural Molecules with Specific Flavor Requirements. Industrial & Engineering Chemistry Research
    Academic article
  • de Souza Gama, Marlon; Lima, Fernando Arrais Romero Dias; Santana, Vinícius Viena; B. R. Nogueira, Idelfonso; Tavares, Frederico Wanderley; Barreto Júnior, Amaro Gomes. (2023) A parallel hybrid model for integrating protein adsorption models with deep neural networks. Adsorption
    Academic article
  • Almeida Costa, Erbet; de Menezes Rebello, Carine; Santana, Vinicius Viena; B. R. Nogueira, Idelfonso. (2023) Physics-informed neural network uncertainty assessment through Bayesian inference. IFAC-PapersOnLine
    Academic article
  • Santana, Vinícius V.; Martins, Márcio A. F.; Loureiro, José M.; Ribeiro, Ana M.; Queiroz, Luana P.; Rebello, Carine M.. (2022) Novel Framework for Simulated Moving Bed Reactor Optimization Based on Deep Neural Network Models and Metaheuristic Optimizers: An Approach with Optimality Guarantee. ACS Omega
    Academic article

Teaching

Courses

  • TKP4100 - Strømning og varmetransport
  • TKP4580 - Kjemisk prosessteknologi, fordypningsprosjekt
  • TKP4581 - Kjemisk prosessteknologi, fordypningsprosjekt
  • KP3010 - Introduksjon til separasjonsprosesser

Outreach

2025

  • Academic lecture
    Moreira, Lorena Claudia de Souza; de Menezes Rebello, Carine; Knuutila, Hanna Katariina; Bessa Dos Reis Nogueira, Idelfonso. (2025) Enhancing Chemical Engineering Education through Augmented Reality Applications. NTNU Læringsfestivalen , Trondheim 2025-05-19 - 2025-05-20

NTNU – Norwegian University of Science and Technology

  • For employees
  • |
  • For students
  • |
  • Intranet
  • |
  • Blackboard

Studies

  • Master's programmes in English
  • For exchange students
  • PhD opportunities
  • Courses
  • Career development
  • Continuing education
  • Application process

News

  • NTNU News
  • Vacancies

About NTNU

  • About the university
  • Libraries
  • NTNU's strategy
  • Research excellence
  • Strategic research areas
  • Organizational chart

Contact

  • Contact NTNU
  • Employees
  • Find experts
  • Press contacts
  • Researcher support
  • Maps

NTNU in three cities

  • NTNU in Gjøvik
  • NTNU in Trondheim
  • NTNU in Ålesund

About this website

  • Use of cookies
  • Accessibility statement
  • Privacy policy
  • Editorial responsibility
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Sign In
NTNU logo