Navigation

  • Skip to Content
NTNU Home NTNU Home

ntnu.edu

  • Studies
    • Master's programmes in English
    • For exchange students
    • PhD opportunities
    • All programmes of study
    • Courses
    • Financing
    • Language requirements
    • Application process
    • Academic calendar
    • FAQ
  • Research and innovation
    • NTNU research
    • Research excellence
    • Strategic research areas
    • Innovation resources
    • PhD opportunities
  • Life and housing
    • Student in Trondheim
    • Student in Gjøvik
    • Student in Ålesund
    • For researchers
    • Life and housing
  • About NTNU
    • Contact us
    • Faculties and departments
    • Libraries
    • International researcher support
    • Vacancies
    • About NTNU
    • Maps
  1. Employees

Språkvelger

Norsk

Helge Langseth

Download press photo
Download press photo
Foto:

Helge Langseth

Professor
Department of Computer Science
Faculty of Information Technology and Electrical Engineering

helge.langseth@ntnu.no
255 Gamle fysikk Gløshaugen, Trondheim
Google Scholar Norwegian Open AI Lab SFI NorwAI
About Publications Teaching Outreach

About

Area of research

My research is on computational structures for helping people making clever decision when faced with uncertainty. In paricular, I work with

  • Probabilistic graphical models, in particular Bayesian networks
  • Decision support systems 
  • Bayesian methods
  • Machine learning

Research group:  Intelligent systems

Homepage: www.idi.ntnu.no/~helgel/

 

Competencies

  • Artificial intelligence
  • Machine learning

Publications

  • Chronological
  • By category
  • See all publications in Cristin

2025

  • Langseth, Helge; Bekkemoen, Yanzhe. (2025) Explainable Reinforcement Learning (XRL): Simplifying Agent Behavior. Norges teknisk-naturvitenskapelige universitet Doctoral theses at NTNU (158)
    Doctoral dissertation
  • Herland, Sverre; Bach, Kerstin; Misimi, Ekrem; Langseth, Helge. (2025) Reinforcement Learning for Robotic Control and Manipulation in Ocean Space Applications. Norges teknisk-naturvitenskapelige universitet Doktoravhandlinger ved NTNU (176)
    Doctoral dissertation
  • Vassøy, Bjørnar; Kille, Benjamin Uwe; Langseth, Helge. (2025) Opt-in Transparent Fairness for Recommender Systems. Lecture Notes in Computer Science (LNCS)
    Academic article

2024

  • Flogard, Eirik Lund; Mengshoel, Ole Jakob; Langseth, Helge; Ramampiaro, Heri; Bach, Kerstin. (2024) Improving Labour Inspection Efficiency via Machine Learning. NTNU
    Doctoral dissertation
  • Andersen, Martin Lieberkind; Sævik, Svein; Wu, Jie; Leira, Bernt Johan; Langseth, Helge. (2024) Simulating Vortex-Induced Vibrations in Sheared Current by Using an Empirical Time-Domain Model with Adaptive Parameters. Applied Ocean Research
    Academic article
  • Danelakis, Antonios; Langseth, Helge; Nachev, Parashkev; Nelson, Amy; Bjørk, Marte-Helene; Matharu, Manjit Singh. (2024) What predicts citation counts and translational impact in headache research? A machine learning analysis. Cephalalgia
    Academic article
  • Vassøy, Bjørnar; Langseth, Helge. (2024) Consumer-side fairness in recommender systems: a systematic survey of methods and evaluation. Artificial Intelligence Review
    Academic literature review
  • Stubberud, Anker; Langseth, Helge; Nachev, Parashkev; Matharu, Manjit S.; Tronvik, Erling Andreas. (2024) Artificial intelligence and headache. Cephalalgia
    Academic literature review
  • Bjøru, Anna Rodum; Cabañas, Rafael; Langseth, Helge; Salmerón, Antonio. (2024) A Divide and Conquer Approach for Solving Structural Causal Models. Proceedings of Machine Learning Research (PMLR)
    Academic article
  • Bekkemoen, Yanzhe; Langseth, Helge. (2024) ASAP: Attention-Based State Space Abstraction for Policy Summarization. Proceedings of Machine Learning Research (PMLR)
    Academic article
  • Andersen, Martin Lieberkind; Sævik, Svein; Wu, Jie; Leira, Bernt Johan; Langseth, Helge. (2024) Applying Bayesian optimization to predict parameters in a time-domain model for cross-flow vortex-induced vibrations. Marine Structures
    Academic article

2023

  • Baumgartner, David; Langseth, Helge; Ramampiaro, Heri; Engø-Monsen, Kenth. (2023) mTADS: Multivariate Time Series Anomaly Detection Benchmark Suites. IEEE (Institute of Electrical and Electronics Engineers)
    Academic chapter/article/Conference paper
  • Hanssen, Jørgen; Langseth, Helge. (2023) Expanding Our Knowledge of Maritime Trade with AIS and Explainable AI Systems. NTNU
    Masters thesis
  • Myhre, Henrik; Matsen, Erik; Langseth, Helge. (2023) Making Sense of Tabular Neural Networks: Interpretability using Concept Detection. NTNU
    Masters thesis
  • Gundersen, Odd Erik; Shamsaliei, Saeid; Kjærnli, Håkon Slåtten; Langseth, Helge. (2023) On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies Involving Neural Networks and Randomness. Association for Computing Machinery (ACM)
    Academic chapter/article/Conference paper
  • Killingberg, Ludvig; Langseth, Helge. (2023) Bayesian Exploration in Deep Reinforcement Learning. CEUR Workshop Proceedings
    Academic article
  • Aftab, Sofia; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2023) Deep Contextual Grid Triplet Network for Context-Aware Recommendation. IEEE Access
    Academic article
  • Vassøy, Bjørnar; Langseth, Helge; Kille, Benjamin Uwe. (2023) Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders. Association for Computing Machinery (ACM)
    Academic chapter/article/Conference paper
  • Killingberg, Ludvig; Langseth, Helge. (2023) The Multiquadric Kernel for Moment-Matching Distributional Reinforcement Learning. Transactions on Machine Learning Research (TMLR)
    Academic article

2022

  • Langseth, Helge; Høijord, Espen Hansen. (2022) Explainable AI (XAI) for grid loss forecasting. Fakultet for informasjonsteknologi og elektroteknikk
    Masters thesis
  • Andersen, Martin Lieberkind; Sævik, Svein; Leira, Bernt Johan; Wu, Jie; Langseth, Helge; Passano, Elizabeth Anne. (2022) Estimation of VIV-parameters based on Response Measurements and Bayesian Machine Learning Algorithms.
    Academic chapter/article/Conference paper
  • Salmeron, Antonio; Langseth, Helge; Masegosa, Andres; Nielsen, Thomas D.. (2022) A Reparameterization of Mixtures of Truncated Basis Functions and its Applications. Proceedings of Machine Learning Research (PMLR)
    Academic article
  • Tiwari, Shweta; Bell, Gavin; Langseth, Helge; Ramampiaro, Heri. (2022) Detection of Potential Manipulations in Electricity Market using Machine Learning Approaches. Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART)
    Academic article

2021

  • Bekkemoen, Yanzhe; Langseth, Helge. (2021) Correcting Classification: A Bayesian Framework Using Explanation Feedback to Improve Classification Abilities. Norwegian University of Science and Technology
    Masters thesis
  • Kvamme, Johannes; Larsen, Pål-Edward; Langseth, Helge. (2021) Achieving Trustable Explanations Through Multi-Task Learning Neural Networks. Norwegian University of Science and Technology
    Masters thesis
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Bach, Kerstin; Langseth, Helge. (2021) Using similarity learning to enable decision support in aquaculture. Doctoral theses at NTNU (331)
    Doctoral dissertation
  • de Souza da Silva, Eliezer; Langseth, Helge; Ramampiaro, Heri. (2021) Factorization models with relational and contextual information: Probabilistic factorization, Point processes and neural sequential models. Doctoral theses at NTNU (1)
    Doctoral dissertation
  • Tiwari, Shweta; Ramampiaro, Heri; Langseth, Helge. (2021) Machine Learning in Financial Market Surveillance: A Survey. IEEE Access
    Academic literature review
  • Masegosa, Andres; Cabañas, Rafael; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2021) Probabilistic Models with Deep Neural Networks. Entropy
    Academic article

2020

  • Masegosa, Andres; Ramos-López, Dario; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2020) Variational Inference over Nonstationary Data Streams for Exponential Family Models. Mathematics
    Academic article
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2020) Analyzing concept drift: A case study in the financial sector. Intelligent Data Analysis
    Academic article
  • Saleh Salem, Tárik; Langseth, Helge; Ramampiaro, Heri. (2020) Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles. Proceedings of Machine Learning Research (PMLR)
    Academic article
  • Høiem, Kristian Wang; Santi, Vemund Mehl; Torsæter, Bendik Nybakk; Langseth, Helge; Andresen, Christian Andre; Rosenlund, Gjert Hovland. (2020) Comparative Study of Event Prediction in Power Grids using Supervised Machine Learning Methods. IEEE (Institute of Electrical and Electronics Engineers)
    Academic chapter/article/Conference paper

2019

  • Swider, Anna; Langseth, Helge; Pedersen, Eilif. (2019) Application of data-driven models in the analysis of marine power systems. Applied Ocean Research
    Academic article
  • Saleh Salem, Tárik; Kathuria, Karan; Ramampiaro, Heri; Langseth, Helge. (2019) Forecasting Intra-Hour Imbalances in Electric Power Systems. Proceedings of the AAAI Conference on Artificial Intelligence
    Academic article
  • Ramampiaro, Heri; Langseth, Helge; Almenningen, Thomas; Schistad, Herman; Havig, Martin Christian; Nguyen, Hai Thanh. (2019) New Ideas in Ranking for Personalized Fashion Recommender Systems. Springer
    Academic chapter/article/Conference paper
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Salmeron, Antonio; Langseth, Helge. (2019) AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems
    Academic article
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge; Bach, Kerstin. (2019) Learning similarity measures from data. Progress in Artificial Intelligence
    Academic article

2018

  • Zeng, Ming; Gao, Haoxiang; Yu, Tong; Mengshoel, Ole Jakob; Langseth, Helge; Lane, Ian. (2018) Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention. Association for Computing Machinery (ACM)
    Academic chapter/article/Conference paper
  • Agarwal, Basant; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2018) A deep network model for paraphrase detection in short text messages. Information Processing & Management
    Academic article
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Salmerón, Antonio; Langseth, Helge. (2018) AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems
    Academic article
  • Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.; Madsen, Anders L.. (2018) A Review of Inference Algorithms for Hybrid Bayesian Networks. The journal of artificial intelligence research
    Academic literature review
  • Ramos-López, Dario; Masegosa, Andres R.; Salmerón, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.. (2018) Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks. International Journal of Approximate Reasoning
    Academic article
  • Pitsilis, Georgios; Ramampiaro, Heri; Langseth, Helge. (2018) Effective hate-speech detection in Twitter data using recurrent neural networks. Applied intelligence (Boston)
    Academic article

2017

  • Ruocco, Massimiliano; Skrede, Ole Steinar Lillestøl; Langseth, Helge. (2017) Inter-Session Modeling for Session-Based Recommendation. Association for Computing Machinery (ACM) Association for Computing Machinery (ACM)
    Academic anthology/Conference proceedings
  • de Souza da Silva, Eliezer; Langseth, Helge; Ramampiaro, Heri. (2017) Content-Based Social Recommendation with Poisson Matrix Factorization. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Masegosa, Andres R.; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario. (2017) Scaling up Bayesian variational inference using distributed computing clusters. International Journal of Approximate Reasoning
    Academic article
  • Masegosa, Andres R.; Nielsen, Thomas D.; Langseth, Helge; Ramos-López, Dario; Salmeron, Antonio; Madsen, Anders L.. (2017) Bayesian Models of Data Streams with Hierarchical Power Priors. JMLR Workshop and Conference Proceedings
    Academic article
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge. (2017) Data driven case base construction for prediction of success of marine operations . CEUR Workshop Proceedings
    Academic article
  • Ramos-López, Dario; Masegosa, Andres R.; Martinez, Ana M.; Salmeron, Antonio; Nielsen, Thomas D.; Langseth, Helge. (2017) MAP inference in dynamic hybrid Bayesian networks . Progress in Artificial Intelligence
    Academic article
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2017) A parallel algorithm for Bayesian network structure learning from large data sets. Knowledge-Based Systems
    Academic article
  • Cabañas, Rafael; Martínez, Ana M.; Masegosa, Andres R.; Ramos-López, Darío; Salmerón, Antonio; Nielsen, Thomas D.. (2017) Financial data analysis with PGMs using AMIDST. IEEE International Conference on Data Mining Workshops, ICDMW
    Academic article

2016

  • Ramos-Lopez, Dario; Salmeron, Antonio; Rumi, Rafel; Martinez, Ana M.; Nielsen, Thomas D.; Masegosa Arredondo, Andres Ramon. (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Journal of machine learning research
    Academic article
  • Salmerón, Antonio; Madsen, Anders L.; Jensen, Frank; Langseth, Helge; Nielsen, Thomas D.; Ramos-López, Dario. (2016) Parallel filter-based feature selection based on balanced incomplete block designs. Frontiers in Artificial Intelligence and Applications
    Academic article
  • Masegosa, Andres R.; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario. (2016) d-VMP: Distributed Variational Message Passing. Journal of machine learning research
    Academic article
  • Ramos-López, Dario; Salmeron, Antonio; Rumi, Rafael; Martinez, Ana M.; Nielsen, Thomas D.; Masegosa, Andres R.. (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Journal of machine learning research
    Academic article

2015

  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2015) Parallelization of the PC Algorithm. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Salmeron, Antonio; Ramoz-López, Darío; Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Fernandez, Antonio. (2015) Parallel importance sampling in conditional linear gaussian networks. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Høverstad, Boye Annfelt; Tidemann, Axel; Langseth, Helge; Øzturk, Pinar. (2015) Short-Term Load Forecasting With Seasonal Decomposition Using Evolution for Parameter Tuning. IEEE Transactions on Smart Grid
    Academic article
  • Pérez-Bernabé, Inmaculada; Salmeron, Antonio; Langseth, Helge. (2015) Learning conditional distributions using mixtures of truncated basis functions. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Madsen, Anders L.; Nielsen, Thomas D.. (2015) MPE inference in Conditional Linear Gaussian Networks. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Myklatun, Øyvind Herstad; Thorrud, Thorstein Kaldahl; Nguyen, Hai Thanh; Langseth, Helge; Kofod-Petersen, Anders. (2015) Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data. ACM Publications
    Academic chapter/article/Conference paper
  • Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2015) Modeling concept drift: A probabilistic graphical model based approach . Lecture Notes in Computer Science (LNCS)
    Academic article
  • Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2015) Dynamic Bayesian modeling for risk prediction in credit operations. Frontiers in Artificial Intelligence and Applications
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2015) Scalable learning of probabilistic latent models for collaborative filtering. Decision Support Systems
    Academic article

2014

  • Zhong, Shengtong; Langseth, Helge; Nielsen, Thomas D.. (2014) A classification-based approach to monitoring the safety of dynamic systems. Reliability Engineering & System Safety
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Pérez-Bernabé, Inmaculada; Salmeron, Antonio. (2014) Learning mixtures of truncated basis functions from data. International Journal of Approximate Reasoning
    Academic article
  • Nguyen, Hai Thanh; Almenningen, Thomas; Havig, Martin; Schistad, Herman; Kofod-Petersen, Anders; Langseth, Helge. (2014) Learning to Rank for Personalized Fashion Recommender Systems via Implicit Feedback. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Karlsen, Martin; Langseth, Helge; Nielsen, Thomas D.. (2014) A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs. Springer
    Academic chapter/article/Conference paper
  • Nielsen, Thomas D.; Hovda, Sigve; Fernandez, Antonio; Langseth, Helge; Madsen, Anders L.; Masegosa, Andres. (2014) Requirement Engineering for a Small Project with Pre-Specified Scope. NIKT: Norsk IKT-konferanse for forskning og utdanning
    Academic article

2013

  • Langseth, Helge. (2013) Beating the bookie: A look at statistical models for prediction of football matches. IOS Press
    Academic chapter/article/Conference paper
  • Tidemann, Axel; Høverstad, Boye Annfelt; Langseth, Helge; Øzturk, Pinar. (2013) Effects of scale on load prediction algorithms. CIRED - Congrès International des Réseaux Electriques de Distribution
    Academic chapter/article/Conference paper
  • Høverstad, Boye Annfelt; Tidemann, Axel; Langseth, Helge. (2013) Effects of data cleansing on load prediction algorithms. IEEE conference proceedings
    Academic chapter/article/Conference paper
  • Langseth, Helge; Marquez, David; Neil, Martin. (2013) Fast approximate inference in hybrid Bayesian networks using dynamic discretisation. Lecture Notes in Computer Science (LNCS)
    Academic article

2012

  • Langseth, Helge; Nielsen, Thomas D.. (2012) A latent model for collaborative filtering. International Journal of Approximate Reasoning
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Mixtures of truncated basis functions. International Journal of Approximate Reasoning
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions.
    Academic chapter/article/Conference paper
  • Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2012) Learning Mixtures of Truncated Basis Functions from Data.
    Academic chapter/article/Conference paper

2011

  • Lillegraven, Terje N.; Wolden, Arnt C.; Kofod-Petersen, Anders; Langseth, Helge. (2011) A design for a tourist CF system. Frontiers in Artificial Intelligence and Applications
    Abstract
  • Houeland, Tor Gunnar Høst; Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) Combining CBR and BN using metareasoning. Frontiers in Artificial Intelligence and Applications
    Academic article
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) A hybrid CBR and BN architecture refined through data analysis. IEEE conference proceedings
    Academic chapter/article/Conference paper
  • Kofod-Petersen, Anders; Heintz, Fredrik; Langseth, Helge. (2011) Foreword. IOS Press
    Foreword
  • Kofod-Petersen, Anders; Heintz, Fredrik; Langseth, Helge. (2011) Eleventh Scandinavian Conference on Artificial Intelligence -- SCAI 2011. IOS Press Frontiers in Artificial Intelligence and Applications (227)
    Academic anthology/Conference proceedings

2010

  • Kofod-Petersen, Anders; Langseth, Helge. (2010) Tourist Without a Cause. Tapir Akademisk Forlag
    Academic chapter/article/Conference paper
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures integrating case-based reasoning and Bayesian networks for clinical decision support. Springer
    Academic chapter/article/Conference paper
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2010) Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials. International Journal of Approximate Reasoning
    Academic article
  • Kofod-Petersen, Anders; Langseth, Helge; Aamodt, Agnar. (2010) Explanations in Bayesian networks using provenance through case-based reasoning.
    Academic chapter/article/Conference paper
  • Fernandez, Antonio; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2010) Parameter learning in MTE networks using incomplete data.
    Academic chapter/article/Conference paper
  • Zhong, Shengtong; Martinez, Ana M.; Nielsen, Thomas D.; Langseth, Helge. (2010) Towards a More Expressive Model for Dynamic Classification. AAAI Press
    Academic chapter/article/Conference paper
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures Integrating Case-Based Reasoning and Bayesian Networks for Clinical Decision Support. IFIP Advances in Information and Communication Technology
    Academic article

2009

  • Langseth, Helge; Nielsen, Thomas D.. (2009) Latent Classification Models for Binary Data. Pattern Recognition
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Inference in Hybrid Bayesian Networks. Reliability Engineering & System Safety
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Kofod-Pedersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the First Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Academic anthology/Conference proceedings
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the First Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Academic anthology/Conference proceedings
  • Langseth, Helge; Nielsen, Thomas D.. (2009) A latent model for collaborative filtering. Aalborg Universitetsforlag Aalborg Universitetsforlag
    Report
  • Zhong, Shengtong; Langseth, Helge. (2009) Local-Global-Learning of Naive Bayesian Classifier. IEEE (Institute of Electrical and Electronics Engineers)
    Academic chapter/article/Conference paper
  • Langseth, Helge. (2009) Bayesian Networks for Collaborative Filtering. Tapir Akademisk Forlag
    Academic chapter/article/Conference paper
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Preface. Tapir Akademisk Forlag
    Foreword
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions. Springer
    Academic chapter/article/Conference paper
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the first Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Academic anthology/Conference proceedings

2008

  • Langseth, Helge; Jensen, Finn V.. (2008) Bayesian Networks and Decision Graphs in Reliability. John Wiley & Sons
    Academic chapter/article/Conference paper
  • Langseth, Helge. (2008) Bayesian networks in Reliability: The Good, The Bad, and The Ugly. IOS Press
    Academic chapter/article/Conference paper

2007

  • Langseth, Helge; Cojazzi, Giacomo G.M.. (2007) Reliability of Safety-Critical Systems: Proceedings of the 30th ESReDA Seminar Hosted by SINTEF, Trondheim, Norway June 7-8, 2006. Office for Official publications of the European communities
    Academic anthology/Conference proceedings
  • Langseth, Helge; Portinale, Luigi. (2007) Applications of Bayesian Networks in Reliability Analysis. Idea Group Publishing
    Academic chapter/article/Conference paper
  • Langseth, Helge; Portinale, Luigi. (2007) Bayesian Networks in Reliability. Reliability Engineering & System Safety
    Academic article

2006

  • Langseth, Helge; Lindqvist, Bo Henry. (2006) Competing risks for repairable systems: A data study. Journal of Statistical Planning and Inference
    Academic article
  • Lindqvist, Bo; Støve, Bård; Langseth, Helge. (2006) Modelling of dependence between critical failure and preventive maintenance: The repair alert model. Journal of Statistical Planning and Inference
    Academic article
  • Vatn, Jørn; Langseth, Helge. (2006) Estimation of Weibull parameters when the i.i.d. assumption does not hold.
    Academic chapter/article/Conference paper
  • Lindqvist, Bo Henry; Støve, Bård; Langseth, Helge. (2006) Modelling of dependence between critical failure and preventive maintenance: The repair alert model. Journal of Statistical Planning and Inference
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2006) Classification using Hierarchical Naïve Bayes models. Machine Learning
    Academic article

2005

  • Lindqvist, Bo Henry; Langseth, Helge. (2005) Statistical modelling and inference for component failure times under preventive maintenance and independent censoring.
    Academic chapter/article/Conference paper
  • Hokstad, Per; Langseth, Helge; Lindqvist, Bo Henry; Vatn, Jørn. (2005) Failure modeling and maintenance optimization for a railway line. International Journal of Performability Engineering
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2005) Latent classification models. Machine Learning
    Academic article

2004

  • Bjørkvoll, Thor; Langseth, Helge. (2004) The Prioritization of Risk Reducing Measures in View of Uncertain Cost/Benefits. Springer
    Academic chapter/article/Conference paper

2003

  • Langseth, Helge; Nielsen, Thomas D.. (2003) Fusion of Domain Knowledge with Data for Structural Learning in Object Oriented Domains. Journal of machine learning research
    Academic article
  • Langseth, Helge; Jensen, Finn V.. (2003) Decision Theoretic Troubleshooting of Coherent Systems. Reliability Engineering & System Safety
    Academic article
  • Langseth, Helge; Lindqvist, Bo Henry. (2003) A maintenance model for components exposed to several failure mechanisms and imperfect repair. World Scientific
    Academic chapter/article/Conference paper

2002

  • Langseth, Helge. (2002) Bayesian Networks with Applications in Reliability Analysis. Tapir Akademisk Forlag Doktor ingeniøravhandling : Dr.Ing.avhandling (2002:121)
    Doctoral dissertation

2001

  • Jensen, Finn V.; Kjærulff, Uffe; Langseth, Helge; Scaanning, Claus; Vomlelova, Marta; Vomlel, Jiri. (2001) The SACSO methodology for troubleshooting complex systems. Artificial intelligence for engineering design, analysis and manufacturing
    Academic article
  • Langseth, Helge; Bangsø, Olav. (2001) Parameter Learning in Object Oriented Bayesian Networks. Annals of Mathematics and Artificial Intelligence
    Academic article

1999

  • Langseth, Helge; Aamodt, Agnar; Winnem, Ole Martin. (1999) Learning retrieval knowledge from data.
    Academic chapter/article/Conference paper

1998

  • Langseth, Helge; Lindqvist, Bo Henry. (1998) Uncertainty bounds for a monotone multistate system. Probability in the engineering and informational sciences (Print)
    Academic article
  • Langseth, Helge; Lindqvist, Bo Henry. (1998) Uncertainty Bounds for a Monotone Multistate System. Probability in the Engineering and Informational Science
    Popular scientific article
  • Aamodt, Agnar; Langseth, Helge. (1998) Integrating Bayesian networks into knowledge-intensive CBR. AAAI Press
    Academic chapter/article/Conference paper
  • Langseth, Helge; Haugen, Knut E. ; Sandtorv, Helge A.. (1998) Analysis of OREDA Data for Maintenance Optimisation. Reliability Engineering & System Safety
    Academic article

Journal publications

  • Vassøy, Bjørnar; Kille, Benjamin Uwe; Langseth, Helge. (2025) Opt-in Transparent Fairness for Recommender Systems. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Andersen, Martin Lieberkind; Sævik, Svein; Wu, Jie; Leira, Bernt Johan; Langseth, Helge. (2024) Simulating Vortex-Induced Vibrations in Sheared Current by Using an Empirical Time-Domain Model with Adaptive Parameters. Applied Ocean Research
    Academic article
  • Danelakis, Antonios; Langseth, Helge; Nachev, Parashkev; Nelson, Amy; Bjørk, Marte-Helene; Matharu, Manjit Singh. (2024) What predicts citation counts and translational impact in headache research? A machine learning analysis. Cephalalgia
    Academic article
  • Vassøy, Bjørnar; Langseth, Helge. (2024) Consumer-side fairness in recommender systems: a systematic survey of methods and evaluation. Artificial Intelligence Review
    Academic literature review
  • Stubberud, Anker; Langseth, Helge; Nachev, Parashkev; Matharu, Manjit S.; Tronvik, Erling Andreas. (2024) Artificial intelligence and headache. Cephalalgia
    Academic literature review
  • Bjøru, Anna Rodum; Cabañas, Rafael; Langseth, Helge; Salmerón, Antonio. (2024) A Divide and Conquer Approach for Solving Structural Causal Models. Proceedings of Machine Learning Research (PMLR)
    Academic article
  • Bekkemoen, Yanzhe; Langseth, Helge. (2024) ASAP: Attention-Based State Space Abstraction for Policy Summarization. Proceedings of Machine Learning Research (PMLR)
    Academic article
  • Andersen, Martin Lieberkind; Sævik, Svein; Wu, Jie; Leira, Bernt Johan; Langseth, Helge. (2024) Applying Bayesian optimization to predict parameters in a time-domain model for cross-flow vortex-induced vibrations. Marine Structures
    Academic article
  • Killingberg, Ludvig; Langseth, Helge. (2023) Bayesian Exploration in Deep Reinforcement Learning. CEUR Workshop Proceedings
    Academic article
  • Aftab, Sofia; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2023) Deep Contextual Grid Triplet Network for Context-Aware Recommendation. IEEE Access
    Academic article
  • Killingberg, Ludvig; Langseth, Helge. (2023) The Multiquadric Kernel for Moment-Matching Distributional Reinforcement Learning. Transactions on Machine Learning Research (TMLR)
    Academic article
  • Salmeron, Antonio; Langseth, Helge; Masegosa, Andres; Nielsen, Thomas D.. (2022) A Reparameterization of Mixtures of Truncated Basis Functions and its Applications. Proceedings of Machine Learning Research (PMLR)
    Academic article
  • Tiwari, Shweta; Bell, Gavin; Langseth, Helge; Ramampiaro, Heri. (2022) Detection of Potential Manipulations in Electricity Market using Machine Learning Approaches. Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART)
    Academic article
  • Tiwari, Shweta; Ramampiaro, Heri; Langseth, Helge. (2021) Machine Learning in Financial Market Surveillance: A Survey. IEEE Access
    Academic literature review
  • Masegosa, Andres; Cabañas, Rafael; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2021) Probabilistic Models with Deep Neural Networks. Entropy
    Academic article
  • Masegosa, Andres; Ramos-López, Dario; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2020) Variational Inference over Nonstationary Data Streams for Exponential Family Models. Mathematics
    Academic article
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2020) Analyzing concept drift: A case study in the financial sector. Intelligent Data Analysis
    Academic article
  • Saleh Salem, Tárik; Langseth, Helge; Ramampiaro, Heri. (2020) Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles. Proceedings of Machine Learning Research (PMLR)
    Academic article
  • Swider, Anna; Langseth, Helge; Pedersen, Eilif. (2019) Application of data-driven models in the analysis of marine power systems. Applied Ocean Research
    Academic article
  • Saleh Salem, Tárik; Kathuria, Karan; Ramampiaro, Heri; Langseth, Helge. (2019) Forecasting Intra-Hour Imbalances in Electric Power Systems. Proceedings of the AAAI Conference on Artificial Intelligence
    Academic article
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Salmeron, Antonio; Langseth, Helge. (2019) AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems
    Academic article
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge; Bach, Kerstin. (2019) Learning similarity measures from data. Progress in Artificial Intelligence
    Academic article
  • Agarwal, Basant; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2018) A deep network model for paraphrase detection in short text messages. Information Processing & Management
    Academic article
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Salmerón, Antonio; Langseth, Helge. (2018) AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems
    Academic article
  • Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.; Madsen, Anders L.. (2018) A Review of Inference Algorithms for Hybrid Bayesian Networks. The journal of artificial intelligence research
    Academic literature review
  • Ramos-López, Dario; Masegosa, Andres R.; Salmerón, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.. (2018) Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks. International Journal of Approximate Reasoning
    Academic article
  • Pitsilis, Georgios; Ramampiaro, Heri; Langseth, Helge. (2018) Effective hate-speech detection in Twitter data using recurrent neural networks. Applied intelligence (Boston)
    Academic article
  • de Souza da Silva, Eliezer; Langseth, Helge; Ramampiaro, Heri. (2017) Content-Based Social Recommendation with Poisson Matrix Factorization. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Masegosa, Andres R.; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario. (2017) Scaling up Bayesian variational inference using distributed computing clusters. International Journal of Approximate Reasoning
    Academic article
  • Masegosa, Andres R.; Nielsen, Thomas D.; Langseth, Helge; Ramos-López, Dario; Salmeron, Antonio; Madsen, Anders L.. (2017) Bayesian Models of Data Streams with Hierarchical Power Priors. JMLR Workshop and Conference Proceedings
    Academic article
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge. (2017) Data driven case base construction for prediction of success of marine operations . CEUR Workshop Proceedings
    Academic article
  • Ramos-López, Dario; Masegosa, Andres R.; Martinez, Ana M.; Salmeron, Antonio; Nielsen, Thomas D.; Langseth, Helge. (2017) MAP inference in dynamic hybrid Bayesian networks . Progress in Artificial Intelligence
    Academic article
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2017) A parallel algorithm for Bayesian network structure learning from large data sets. Knowledge-Based Systems
    Academic article
  • Cabañas, Rafael; Martínez, Ana M.; Masegosa, Andres R.; Ramos-López, Darío; Salmerón, Antonio; Nielsen, Thomas D.. (2017) Financial data analysis with PGMs using AMIDST. IEEE International Conference on Data Mining Workshops, ICDMW
    Academic article
  • Ramos-Lopez, Dario; Salmeron, Antonio; Rumi, Rafel; Martinez, Ana M.; Nielsen, Thomas D.; Masegosa Arredondo, Andres Ramon. (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Journal of machine learning research
    Academic article
  • Salmerón, Antonio; Madsen, Anders L.; Jensen, Frank; Langseth, Helge; Nielsen, Thomas D.; Ramos-López, Dario. (2016) Parallel filter-based feature selection based on balanced incomplete block designs. Frontiers in Artificial Intelligence and Applications
    Academic article
  • Masegosa, Andres R.; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario. (2016) d-VMP: Distributed Variational Message Passing. Journal of machine learning research
    Academic article
  • Ramos-López, Dario; Salmeron, Antonio; Rumi, Rafael; Martinez, Ana M.; Nielsen, Thomas D.; Masegosa, Andres R.. (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Journal of machine learning research
    Academic article
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2015) Parallelization of the PC Algorithm. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Salmeron, Antonio; Ramoz-López, Darío; Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Fernandez, Antonio. (2015) Parallel importance sampling in conditional linear gaussian networks. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Høverstad, Boye Annfelt; Tidemann, Axel; Langseth, Helge; Øzturk, Pinar. (2015) Short-Term Load Forecasting With Seasonal Decomposition Using Evolution for Parameter Tuning. IEEE Transactions on Smart Grid
    Academic article
  • Pérez-Bernabé, Inmaculada; Salmeron, Antonio; Langseth, Helge. (2015) Learning conditional distributions using mixtures of truncated basis functions. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Madsen, Anders L.; Nielsen, Thomas D.. (2015) MPE inference in Conditional Linear Gaussian Networks. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2015) Modeling concept drift: A probabilistic graphical model based approach . Lecture Notes in Computer Science (LNCS)
    Academic article
  • Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2015) Dynamic Bayesian modeling for risk prediction in credit operations. Frontiers in Artificial Intelligence and Applications
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2015) Scalable learning of probabilistic latent models for collaborative filtering. Decision Support Systems
    Academic article
  • Zhong, Shengtong; Langseth, Helge; Nielsen, Thomas D.. (2014) A classification-based approach to monitoring the safety of dynamic systems. Reliability Engineering & System Safety
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Pérez-Bernabé, Inmaculada; Salmeron, Antonio. (2014) Learning mixtures of truncated basis functions from data. International Journal of Approximate Reasoning
    Academic article
  • Nguyen, Hai Thanh; Almenningen, Thomas; Havig, Martin; Schistad, Herman; Kofod-Petersen, Anders; Langseth, Helge. (2014) Learning to Rank for Personalized Fashion Recommender Systems via Implicit Feedback. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Nielsen, Thomas D.; Hovda, Sigve; Fernandez, Antonio; Langseth, Helge; Madsen, Anders L.; Masegosa, Andres. (2014) Requirement Engineering for a Small Project with Pre-Specified Scope. NIKT: Norsk IKT-konferanse for forskning og utdanning
    Academic article
  • Langseth, Helge; Marquez, David; Neil, Martin. (2013) Fast approximate inference in hybrid Bayesian networks using dynamic discretisation. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2012) A latent model for collaborative filtering. International Journal of Approximate Reasoning
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Mixtures of truncated basis functions. International Journal of Approximate Reasoning
    Academic article
  • Lillegraven, Terje N.; Wolden, Arnt C.; Kofod-Petersen, Anders; Langseth, Helge. (2011) A design for a tourist CF system. Frontiers in Artificial Intelligence and Applications
    Abstract
  • Houeland, Tor Gunnar Høst; Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) Combining CBR and BN using metareasoning. Frontiers in Artificial Intelligence and Applications
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2010) Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials. International Journal of Approximate Reasoning
    Academic article
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures Integrating Case-Based Reasoning and Bayesian Networks for Clinical Decision Support. IFIP Advances in Information and Communication Technology
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2009) Latent Classification Models for Binary Data. Pattern Recognition
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Inference in Hybrid Bayesian Networks. Reliability Engineering & System Safety
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions. Lecture Notes in Computer Science (LNCS)
    Academic article
  • Langseth, Helge; Portinale, Luigi. (2007) Bayesian Networks in Reliability. Reliability Engineering & System Safety
    Academic article
  • Langseth, Helge; Lindqvist, Bo Henry. (2006) Competing risks for repairable systems: A data study. Journal of Statistical Planning and Inference
    Academic article
  • Lindqvist, Bo; Støve, Bård; Langseth, Helge. (2006) Modelling of dependence between critical failure and preventive maintenance: The repair alert model. Journal of Statistical Planning and Inference
    Academic article
  • Lindqvist, Bo Henry; Støve, Bård; Langseth, Helge. (2006) Modelling of dependence between critical failure and preventive maintenance: The repair alert model. Journal of Statistical Planning and Inference
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2006) Classification using Hierarchical Naïve Bayes models. Machine Learning
    Academic article
  • Hokstad, Per; Langseth, Helge; Lindqvist, Bo Henry; Vatn, Jørn. (2005) Failure modeling and maintenance optimization for a railway line. International Journal of Performability Engineering
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2005) Latent classification models. Machine Learning
    Academic article
  • Langseth, Helge; Nielsen, Thomas D.. (2003) Fusion of Domain Knowledge with Data for Structural Learning in Object Oriented Domains. Journal of machine learning research
    Academic article
  • Langseth, Helge; Jensen, Finn V.. (2003) Decision Theoretic Troubleshooting of Coherent Systems. Reliability Engineering & System Safety
    Academic article
  • Jensen, Finn V.; Kjærulff, Uffe; Langseth, Helge; Scaanning, Claus; Vomlelova, Marta; Vomlel, Jiri. (2001) The SACSO methodology for troubleshooting complex systems. Artificial intelligence for engineering design, analysis and manufacturing
    Academic article
  • Langseth, Helge; Bangsø, Olav. (2001) Parameter Learning in Object Oriented Bayesian Networks. Annals of Mathematics and Artificial Intelligence
    Academic article
  • Langseth, Helge; Lindqvist, Bo Henry. (1998) Uncertainty bounds for a monotone multistate system. Probability in the engineering and informational sciences (Print)
    Academic article
  • Langseth, Helge; Lindqvist, Bo Henry. (1998) Uncertainty Bounds for a Monotone Multistate System. Probability in the Engineering and Informational Science
    Popular scientific article
  • Langseth, Helge; Haugen, Knut E. ; Sandtorv, Helge A.. (1998) Analysis of OREDA Data for Maintenance Optimisation. Reliability Engineering & System Safety
    Academic article

Books

  • Ruocco, Massimiliano; Skrede, Ole Steinar Lillestøl; Langseth, Helge. (2017) Inter-Session Modeling for Session-Based Recommendation. Association for Computing Machinery (ACM) Association for Computing Machinery (ACM)
    Academic anthology/Conference proceedings
  • Kofod-Petersen, Anders; Heintz, Fredrik; Langseth, Helge. (2011) Eleventh Scandinavian Conference on Artificial Intelligence -- SCAI 2011. IOS Press Frontiers in Artificial Intelligence and Applications (227)
    Academic anthology/Conference proceedings
  • Kofod-Pedersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the First Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Academic anthology/Conference proceedings
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the First Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Academic anthology/Conference proceedings
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the first Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Academic anthology/Conference proceedings
  • Langseth, Helge; Cojazzi, Giacomo G.M.. (2007) Reliability of Safety-Critical Systems: Proceedings of the 30th ESReDA Seminar Hosted by SINTEF, Trondheim, Norway June 7-8, 2006. Office for Official publications of the European communities
    Academic anthology/Conference proceedings

Part of book/report

  • Baumgartner, David; Langseth, Helge; Ramampiaro, Heri; Engø-Monsen, Kenth. (2023) mTADS: Multivariate Time Series Anomaly Detection Benchmark Suites. IEEE (Institute of Electrical and Electronics Engineers)
    Academic chapter/article/Conference paper
  • Gundersen, Odd Erik; Shamsaliei, Saeid; Kjærnli, Håkon Slåtten; Langseth, Helge. (2023) On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies Involving Neural Networks and Randomness. Association for Computing Machinery (ACM)
    Academic chapter/article/Conference paper
  • Vassøy, Bjørnar; Langseth, Helge; Kille, Benjamin Uwe. (2023) Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders. Association for Computing Machinery (ACM)
    Academic chapter/article/Conference paper
  • Andersen, Martin Lieberkind; Sævik, Svein; Leira, Bernt Johan; Wu, Jie; Langseth, Helge; Passano, Elizabeth Anne. (2022) Estimation of VIV-parameters based on Response Measurements and Bayesian Machine Learning Algorithms.
    Academic chapter/article/Conference paper
  • Høiem, Kristian Wang; Santi, Vemund Mehl; Torsæter, Bendik Nybakk; Langseth, Helge; Andresen, Christian Andre; Rosenlund, Gjert Hovland. (2020) Comparative Study of Event Prediction in Power Grids using Supervised Machine Learning Methods. IEEE (Institute of Electrical and Electronics Engineers)
    Academic chapter/article/Conference paper
  • Ramampiaro, Heri; Langseth, Helge; Almenningen, Thomas; Schistad, Herman; Havig, Martin Christian; Nguyen, Hai Thanh. (2019) New Ideas in Ranking for Personalized Fashion Recommender Systems. Springer
    Academic chapter/article/Conference paper
  • Zeng, Ming; Gao, Haoxiang; Yu, Tong; Mengshoel, Ole Jakob; Langseth, Helge; Lane, Ian. (2018) Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention. Association for Computing Machinery (ACM)
    Academic chapter/article/Conference paper
  • Myklatun, Øyvind Herstad; Thorrud, Thorstein Kaldahl; Nguyen, Hai Thanh; Langseth, Helge; Kofod-Petersen, Anders. (2015) Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data. ACM Publications
    Academic chapter/article/Conference paper
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Karlsen, Martin; Langseth, Helge; Nielsen, Thomas D.. (2014) A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs. Springer
    Academic chapter/article/Conference paper
  • Langseth, Helge. (2013) Beating the bookie: A look at statistical models for prediction of football matches. IOS Press
    Academic chapter/article/Conference paper
  • Tidemann, Axel; Høverstad, Boye Annfelt; Langseth, Helge; Øzturk, Pinar. (2013) Effects of scale on load prediction algorithms. CIRED - Congrès International des Réseaux Electriques de Distribution
    Academic chapter/article/Conference paper
  • Høverstad, Boye Annfelt; Tidemann, Axel; Langseth, Helge. (2013) Effects of data cleansing on load prediction algorithms. IEEE conference proceedings
    Academic chapter/article/Conference paper
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions.
    Academic chapter/article/Conference paper
  • Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2012) Learning Mixtures of Truncated Basis Functions from Data.
    Academic chapter/article/Conference paper
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) A hybrid CBR and BN architecture refined through data analysis. IEEE conference proceedings
    Academic chapter/article/Conference paper
  • Kofod-Petersen, Anders; Heintz, Fredrik; Langseth, Helge. (2011) Foreword. IOS Press
    Foreword
  • Kofod-Petersen, Anders; Langseth, Helge. (2010) Tourist Without a Cause. Tapir Akademisk Forlag
    Academic chapter/article/Conference paper
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures integrating case-based reasoning and Bayesian networks for clinical decision support. Springer
    Academic chapter/article/Conference paper
  • Kofod-Petersen, Anders; Langseth, Helge; Aamodt, Agnar. (2010) Explanations in Bayesian networks using provenance through case-based reasoning.
    Academic chapter/article/Conference paper
  • Fernandez, Antonio; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2010) Parameter learning in MTE networks using incomplete data.
    Academic chapter/article/Conference paper
  • Zhong, Shengtong; Martinez, Ana M.; Nielsen, Thomas D.; Langseth, Helge. (2010) Towards a More Expressive Model for Dynamic Classification. AAAI Press
    Academic chapter/article/Conference paper
  • Zhong, Shengtong; Langseth, Helge. (2009) Local-Global-Learning of Naive Bayesian Classifier. IEEE (Institute of Electrical and Electronics Engineers)
    Academic chapter/article/Conference paper
  • Langseth, Helge. (2009) Bayesian Networks for Collaborative Filtering. Tapir Akademisk Forlag
    Academic chapter/article/Conference paper
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Preface. Tapir Akademisk Forlag
    Foreword
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions. Springer
    Academic chapter/article/Conference paper
  • Langseth, Helge; Jensen, Finn V.. (2008) Bayesian Networks and Decision Graphs in Reliability. John Wiley & Sons
    Academic chapter/article/Conference paper
  • Langseth, Helge. (2008) Bayesian networks in Reliability: The Good, The Bad, and The Ugly. IOS Press
    Academic chapter/article/Conference paper
  • Langseth, Helge; Portinale, Luigi. (2007) Applications of Bayesian Networks in Reliability Analysis. Idea Group Publishing
    Academic chapter/article/Conference paper
  • Vatn, Jørn; Langseth, Helge. (2006) Estimation of Weibull parameters when the i.i.d. assumption does not hold.
    Academic chapter/article/Conference paper
  • Lindqvist, Bo Henry; Langseth, Helge. (2005) Statistical modelling and inference for component failure times under preventive maintenance and independent censoring.
    Academic chapter/article/Conference paper
  • Bjørkvoll, Thor; Langseth, Helge. (2004) The Prioritization of Risk Reducing Measures in View of Uncertain Cost/Benefits. Springer
    Academic chapter/article/Conference paper
  • Langseth, Helge; Lindqvist, Bo Henry. (2003) A maintenance model for components exposed to several failure mechanisms and imperfect repair. World Scientific
    Academic chapter/article/Conference paper
  • Langseth, Helge; Aamodt, Agnar; Winnem, Ole Martin. (1999) Learning retrieval knowledge from data.
    Academic chapter/article/Conference paper
  • Aamodt, Agnar; Langseth, Helge. (1998) Integrating Bayesian networks into knowledge-intensive CBR. AAAI Press
    Academic chapter/article/Conference paper

Report

  • Langseth, Helge; Bekkemoen, Yanzhe. (2025) Explainable Reinforcement Learning (XRL): Simplifying Agent Behavior. Norges teknisk-naturvitenskapelige universitet Doctoral theses at NTNU (158)
    Doctoral dissertation
  • Herland, Sverre; Bach, Kerstin; Misimi, Ekrem; Langseth, Helge. (2025) Reinforcement Learning for Robotic Control and Manipulation in Ocean Space Applications. Norges teknisk-naturvitenskapelige universitet Doktoravhandlinger ved NTNU (176)
    Doctoral dissertation
  • Flogard, Eirik Lund; Mengshoel, Ole Jakob; Langseth, Helge; Ramampiaro, Heri; Bach, Kerstin. (2024) Improving Labour Inspection Efficiency via Machine Learning. NTNU
    Doctoral dissertation
  • Hanssen, Jørgen; Langseth, Helge. (2023) Expanding Our Knowledge of Maritime Trade with AIS and Explainable AI Systems. NTNU
    Masters thesis
  • Myhre, Henrik; Matsen, Erik; Langseth, Helge. (2023) Making Sense of Tabular Neural Networks: Interpretability using Concept Detection. NTNU
    Masters thesis
  • Langseth, Helge; Høijord, Espen Hansen. (2022) Explainable AI (XAI) for grid loss forecasting. Fakultet for informasjonsteknologi og elektroteknikk
    Masters thesis
  • Bekkemoen, Yanzhe; Langseth, Helge. (2021) Correcting Classification: A Bayesian Framework Using Explanation Feedback to Improve Classification Abilities. Norwegian University of Science and Technology
    Masters thesis
  • Kvamme, Johannes; Larsen, Pål-Edward; Langseth, Helge. (2021) Achieving Trustable Explanations Through Multi-Task Learning Neural Networks. Norwegian University of Science and Technology
    Masters thesis
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Bach, Kerstin; Langseth, Helge. (2021) Using similarity learning to enable decision support in aquaculture. Doctoral theses at NTNU (331)
    Doctoral dissertation
  • de Souza da Silva, Eliezer; Langseth, Helge; Ramampiaro, Heri. (2021) Factorization models with relational and contextual information: Probabilistic factorization, Point processes and neural sequential models. Doctoral theses at NTNU (1)
    Doctoral dissertation
  • Langseth, Helge; Nielsen, Thomas D.. (2009) A latent model for collaborative filtering. Aalborg Universitetsforlag Aalborg Universitetsforlag
    Report
  • Langseth, Helge. (2002) Bayesian Networks with Applications in Reliability Analysis. Tapir Akademisk Forlag Doktor ingeniøravhandling : Dr.Ing.avhandling (2002:121)
    Doctoral dissertation

Teaching

Courses

  • TDT4172 - Introduksjon til maskinlæring
  • TDT4171 - Metoder i kunstig intelligens
  • DT8122 - Probabilistisk kunstig intelligens
  • IT3030 - Dyp læring

Outreach

2024

  • Academic lecture
    Danelakis, Antonios; Stubberud, Anker; Winsvold, Bendik Kristoffer Slagsvold; bjørk, marte helene; Giles, Dominic; Nachev, Parashkev. (2024) Machine learning versus polygenic risk scoring as migraine predictors based on genome-wide genotype data. The Migraine Trust Migraine Trust International Symposium (MTIS) 2024 , London 2024-08-05 - 2024-08-08
  • Academic lecture
    Danelakis, Antonios; Abildsnes, Håkon Kvisle; Faisal, Fahim; Winsvold, Bendik Kristoffer Slagsvold; bjørk, marte helene; Giles, Dominic. (2024) Machine learning can predict migraine from genotype and non-headache clinical data with high accuracy. European Headache Federation European Headache Congress (EHC) 2024 , Rotterdam 2024-12-04 - 2024-12-07

2023

  • Academic lecture
    Bekkemoen, Yanzhe; Langseth, Helge. (2023) ASAP: Attention-Based State Space Abstraction for Policy Summarization. Asian Conference on Machine Learning The 15th Asian Conference on Machine Learning , Istanbul, Turkey 2023-11-11 - 2023-11-14
  • Poster
    Vassøy, Bjørnar; Langseth, Helge; Kille, Benjamin Uwe. (2023) Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders. ACM ACM RecSys 2023 , Singapore 2023-09-18 - 2023-09-22

2022

  • Academic lecture
    Salmeron, Antonio; Langseth, Helge; Masegosa, Andres; Nielsen, Thomas D.. (2022) A Reparameterization of Mixtures of Truncated Basis Functions and its Applications. International Conference on Probabilistic Graphical Models , Almeria, Spaia 2022-10-05 - 2022-10-07
  • Interview
    Langseth, Helge. (2022) Skal vi godta at våpen sjølv bestemmer når dei skal drepe?. NRK P2, Kompass NRK P2, Kompass [Radio] 2022-01-03

2021

  • Interview
    Langseth, Helge. (2021) Spotifys makt over dine lyttervaner. Under dusken Under dusken [Internet] 2021-04-21

2020

  • Interview
    Holter, Trym; Langseth, Helge. (2020) Ønsker å gjøre kunstig intelligens mer forståelig. [Internet] 2020-09-26
  • Interview
    Langseth, Helge. (2020) Nå blir terskelen enda lavere for nordmenn som vil lære om kunstig intelligens. DigitalNorway DigitalNorway [Internet] 2020-04-29

2019

  • Interview
    Langseth, Helge. (2019) Opprop mot dødelige autonome våpen. Universitetsavisa Universitetsavisa [Internet] 2019-05-14

2018

  • Academic lecture
    Zeng, Ming; Gao, Haoxiang; Yu, Tong; Mengshoel, Ole Jakob; Langseth, Helge; Lane, Ian. (2018) Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention. ACM 2018 ACM International Symposium on Wearable Computers , Singapore 2018-10-08 - 2018-10-12

2017

  • Academic lecture
    Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge. (2017) Data driven case base construction for prediction of success of marine operations. NTNU ICCBR-17 Workshop on Workshop on Case-based Reasoning and Deep Learning - CBRDL 2017 , Trondheim 2017-06-26 - 2017-06-26

2015

  • Interview
    Langseth, Helge; Bjørkeng, Per Kristian. (2015) Dyp læring: Slik har maskinene begynt å lære som oss. Aftenposten Aftenposten [Newspaper] 2015-12-09
  • Popular scientific lecture
    Langseth, Helge. (2015) Research Frontiers in Recommender Systems. Telenor AI and BigData in a Digital World , Fornebu 2015-05-27 - 2015-05-27
  • Popular scientific lecture
    Langseth, Helge. (2015) Big Data: En kunst å hente kunnskap ut av store tall?. SINTEF TEKMAR , Trondheim 2015-12-01 - 2015-12-02
  • Academic lecture
    Masegosa, Andres; Martinez, Ana M.; Borchani, Hanen; Ramos-Lopez, Dario; Nielsen, Thomas D.; Langseth, Helge. (2015) AMIDST: Analysis of MassIve Data STreams. Benelux Conference on Artificial Intelligence 27th Benelux Conference on Artificial Intelligence , Hasselt, Belgium 2015-11-05 - 2015-11-06

2013

  • Academic lecture
    Langseth, Helge. (2013) Beating the bookie: A look at statistical models for prediction of football matches. The 12th Scandinavian AI conference 2013-11-20 - 2013-11-22
  • Academic lecture
    Langseth, Helge; Marquez, David; Neil, Martin. (2013) Fast approximate inference in hybrid Bayesian networks using dynamic discretisation. 5th. INTERNATIONAL WORK-CONFERENCE on the INTERPLAY between NATURAL and ARTIFICIAL COMPUTATION , Palmanova, Mallorca 2013-06-11 - 2013-06-13

2012

  • Academic lecture
    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions. The Sixth European Workshop on Probabilistic Graphical Models , Granada 2012-09-19 - 2012-09-21
  • Academic lecture
    Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2012) Learning Mixtures of Truncated Basis Functions from Data. The Sixth European Workshop on Probabilistic Graphical Models , Granada 2012-09-19 - 2012-09-21

2011

  • Academic lecture
    Houeland, Tor Gunnar Høst; Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) Combining CBR and BN using metareasoning. Eleventh Scandinavian Conference on Artificial Intelligence , Trondheim 2011-05-24 - 2011-05-26
  • Academic lecture
    Lillegraven, Terje N.; Wolden, Arnt C.; Kofod-Petersen, Anders; Langseth, Helge. (2011) A design for a tourist CF system. Eleventh Scandinavian Conference on Artificial Intelligence , Trondheim 2011-05-24 - 2011-05-26

2010

  • Academic lecture
    Kofod-Petersen, Anders; Langseth, Helge. (2010) Tourist without a cause. NAIS Second Norwegian Artificial Intelligence Symposium , Gjøvik 2010-11-22 - 2010-11-22
  • Academic lecture
    Fernandez, Antonio; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2010) Parameter learning in MTE networks using incomplete data. The Fifth European Workshop on Probabilistic Graphical Models , Helsinki 2010-09-13 - 2010-09-15
  • Academic lecture
    Kofod-Petersen, Anders; Langseth, Helge; Aamodt, Agnar. (2010) Explanations in Bayesian Networks using Provenance through Case-based Reasoning. ICCBR 2010 workshop on provenance-aware case-based reasoning (PA-CBR 2010) 2010-07-20 - 2010-07-20
  • Academic lecture
    Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures Integrating Case-Based Reasoning and Bayesian Networks for Clinical Decision Support. The International Federation for Information Processing Intelligent Information Processing (IIP) 2010 , Manchester 2010-10-13 - 2010-10-16

2009

  • Academic lecture
    Langseth, Helge. (2009) Bayesian Networks for Collaborative Filtering. Norsk Forening For Kunstig Intelligens First Norwegian Artificial Intelligence Symposium , Trondheim 2009-11-23 - 2009-11-23
  • Academic lecture
    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions. ECSQARU 2009 , Verona 2009-07-01 - 2009-07-03

2008

  • Academic lecture
    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2008) Parameter Estimation in Mixtures of Truncated Exponentials. Aalborg Universitet The Fourth European Workshop on Probabilistic Graphical Models , Hirtshals 2008-09-17 - 2008-09-19

2007

  • Academic lecture
    Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Rumi, Rafael. (2007) Maximum Likelihood vs. Least Squares for Estimating Mixtures of Truncated Exponentials. INFORMS '07 2007-11-04 - 2007-11-07
  • Academic lecture
    Langseth, Helge. (2007) Bayesian Networks in Reliability. Strathclyde University Mathematical Methods in Reliability: Methodology and Practice , Glasgow 2007-07-01 - 2007-07-04

2004

  • Academic lecture
    Langseth, Helge. (2004) Bayesian Networks in Reliability: Some recent developments. MMR The fourth International Conference on Mathematical Models in Reliability, MMR'04 , Santa Fe, NM 2004-06-21 - 2004-06-25

2003

  • Academic lecture
    Langseth, Helge; Lindqvist, Bo Henry. (2003) Competing risk combined with imperfect repair: Some of the dirty details. Workshop on Analysis of Competing Risks - Statistical and Probabilistic Approach. , Delft, Holland 2003-06-20 -

2002

  • Academic lecture
    Langseth, Helge; Lindqvist, Bo Henry. (2002) Modelling imperfect maintenance and repair of components under competing risk. Third International Conference on Mathematical Methods in Reliability , Trondheim 2002-06-20 -

2001

  • Academic lecture
    Langseth, Helge; Jensen, Finn V.. (2001) Heuristics for two extensions of basic troubleshooting. SCAI Seventh scandinavian conference on Artificial Intelligence, SCAI'01 , Odense 2001-02-21 - 2002-02-22
  • Academic lecture
    Bangsø, Olav; Langseth, Helge; Nielsen, Thomas D.. (2001) Structural Learning in Object Oriented Domains. Fourteenth International Florida Artificial Intelligence Research Society Conference , Key West, FL 2001-05-23 -

1999

  • Academic lecture
    Langseth, Helge; Aamodt, Agnar; Winnem, Ole Martin. (1999) Learning retrieval knowledge form data. IJCAI Sixteenth International Joint Conference on Artificial Intelligence , Stockholm 1999-07-31 - 1999-08-06
  • Academic lecture
    Langseth, Helge. (1999) Modelling Maintenance for Components under Competing Risk. Tenth European Conference on Safety and Reliability -- ESREL'99 , Munchen 1999-09-17 -

1998

  • Academic lecture
    Langseth, Helge. (1998) Analysis of survival times using Bayesian Networks. The ninth European Conference on Safety and Reliability - ESREL'98 , Trondheim 1998-06-10 -
  • Academic lecture
    Langseth, Helge. (1998) Analysis of survival times using Bayesian networks. ESREL'98 , Trondheim 1998-06-09 -
  • Academic lecture
    Langseth, Helge; Aamodt, Agnar. (1998) Integrating Bayesian networks into knowledge intensive CBR. AAAI Amerikanske AI-konferansen, AAAI-98 , Madison, wis. USA 1998-08-27 -

NTNU – Norwegian University of Science and Technology

  • For employees
  • |
  • For students
  • |
  • Intranet
  • |
  • Blackboard

Studies

  • Master's programmes in English
  • For exchange students
  • PhD opportunities
  • Courses
  • Career development
  • Continuing education
  • Application process

News

  • NTNU News
  • Vacancies

About NTNU

  • About the university
  • Libraries
  • NTNU's strategy
  • Research excellence
  • Strategic research areas
  • Organizational chart

Contact

  • Contact NTNU
  • Employees
  • Find experts
  • Press contacts
  • Researcher support
  • Maps

NTNU in three cities

  • NTNU in Gjøvik
  • NTNU in Trondheim
  • NTNU in Ålesund

About this website

  • Use of cookies
  • Accessibility statement
  • Privacy policy
  • Editorial responsibility
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Sign In
NTNU logo