Riemannian optimization software and applications

TMS Workshop on
Foundations of Numerical Differential Geometry, May 7, 2024
Nicolas Boumal - chair of continuous optimization Institute of Mathematics, EPFL

Step 0 in optimization

It starts with a set S and a function $f: S \rightarrow \mathbf{R}$. We want to compute:

$$
\min _{x \in S} f(x)
$$

These bare objects fully specify the problem.

Any additional structure on S and f may (and should) be exploited for algorithmic purposes but is not part of the problem.

Classical unconstrained optimization

The search space is a linear space, e.g., $S=\mathbf{R}^{n}$:

$$
\min _{x \in \mathbf{R}^{n}} f(x)
$$

We can choose to turn \mathbf{R}^{n} into a Euclidean space: $\langle u, v\rangle=u^{\top} v$.
If f is differentiable, we have a gradient grad f and Hessian Hess f. We can build algorithms with them: gradient descent, Newton's...

$$
\begin{aligned}
\langle\operatorname{grad} f(x), v\rangle=\mathrm{D} f(x)[v] & =\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t} \\
\operatorname{Hess} f(x)[v]=\mathrm{D}(\operatorname{grad} f)(x)[v] & =\lim _{t \rightarrow 0} \frac{\operatorname{grad} f(x+t v)-\operatorname{grad} f(x)}{t}
\end{aligned}
$$

Optimization on manifolds

We target applications where $S=\mathcal{M}$ is a smooth manifold:

$$
\min _{x \in \mathcal{M}} f(x)
$$

We can choose to turn \mathcal{M} into a Riemannian manifold.

If f is differentiable, we have a Riemannian gradient and Hessian. We can build algorithms with them: gradient descent, Newton's...

Manopt provides manifolds, solvers, tools

Manopt is a family of toolboxes for Riemannian optimization.
Go to manopt.org, pymanopt.org or manoptjl.org for code and help.

Matlab example for $\min _{\|x\|=1} x^{\top} A x$:

```
problem.M = spherefactory(n);
problem.cost = @(x) x'*A*x;
problem.egrad = @(x) 2*A*x;
x = trustregions(problem);
```

Lead by J. Townsend, N. Koep \& S. Weichwald

Lead by
Ronny Bergmann

Example 1: Max-Cut

 Input: An undirected graph.Output:
Vertex labels ($+1,-1$) so that as many edges as possible connect different labels.

Goemans Williamson 1995, Burer Monteiro Zhang 2001, Journée Bach Absil Sepulchre 2010

Max-Cut

Input:
An undirected graph: adjacency matrix A.
Output:
Vertex labels $x_{i} \in\{+1,-1\}$ so that as many edges as possible connect different labels.
s.t. $x_{i} \in\{ \pm 1\}$

Relax the dimension:
Let x_{i} be unit-norm in \mathbf{R}^{p}.

Max-Cut via relaxation to spheres in Manopt

With adjacency matrix $A \in \mathbf{R}^{n \times n}$, want:

$$
\min _{x_{1}, \ldots, x_{n} \in \mathbf{R}^{p}} \sum_{i j} a_{i j} x_{i}^{\top} x_{j} \text { s.t. }\left\|x_{i}\right\|=1 \forall i
$$

The manifold is a product of n spheres:

```
data = load('graph20.mat');
A = data.A; n = data.n;
```


$$
p=2
$$

$$
\text { problem. } M=\text { obliquefactory }(\mathrm{p}, \mathrm{n}) \text {; }
$$

$$
\text { problem.cost }=@(X) \operatorname{sum}((X \star A) . \star X, \quad ' a l l ') ;
$$

$$
\text { problem.egrad }=@(X) 2 * X * A ;
$$

$$
\text { problem.ehess }=@(X, X d o t) 2 \star \text { Xdot*A; }
$$

$$
\begin{aligned}
\mathcal{M} & =\left\{x \in \mathbf{R}^{p}:\|x\|=1\right\}^{n} \\
& \equiv\left\{X \in \mathbf{R}^{p \times n}:\left\|X_{;, i}\right\|=1 \forall i\right\}
\end{aligned}
$$

```
X = trustregions(problem);
```

Called the oblique manifold.

Fifty years

Proposed by Luenberger in 1972.

Practical since the 1990s with numerical linear algebra.

MANAGement science
Vol. 18, No. 11, July, 1972
Vol. 18, No. 11, Joly,
Printed in U.S.A.
THE GRADIENT PROJECTION METHOD ALONG GEODESICS* \dagger DAVID G. LUENBERGER

Slanford University

SIAM J. MATRIX ANAL. APpl.
Vol. 20, No. 2, pp. ${ }^{303-353}$ © 1998 Society for Industrial and Applied Mathematics

THE GEOMETRY OF ALGORITHMS WITH ORTHOGONALITY CONSTRAINTS ALAN EDELMAN ${ }^{\dagger}$, TOMÁS A. ARIAS ${ }^{\ddagger}$, AND STEVEN T. SMITH ${ }^{\S}$

Popularized in the 2010s
by Absil, Mahony \& Sepulchre's book.

Becoming mainstream now.

How do manifolds arise in optimization?

Linear spaces
$\mathbf{R}^{n}, \mathbf{R}^{n \times m}$

Symmetry
Quotient manifolds
Orthonormality
Spheres, Stiefel, rotations, Grassmann
Lifts/parameterizations
arXiv:2207.03512, with E. Levin \& J. Kileel
Positivity
Simplex, positive definite matrices

Rank
Matrices, tensors
Products
$\mathcal{N} \times \mathcal{N}$

How do you "put" a manifold

and those other tools

in a computer?

TMS Workshop on
Foundations of Numerical Differential Geometry

What do we need?

$$
\min _{x} f(x)
$$

Euclidean optimization

Basic step:

$$
x_{k+1}=x_{k}+s_{k}
$$

Gradient descent: $\quad s_{k}=-\alpha_{k} \operatorname{grad} f\left(x_{k}\right)$
same, with Riemannian gradient

Newton's method: $\quad \operatorname{Hess} f\left(x_{k}\right)\left[s_{k}\right]=-\operatorname{grad} f\left(x_{k}\right)$
Riemannian optimization

$$
x_{k+1}=R_{x_{k}}\left(s_{k}\right) \quad \text { (retraction) }
$$

(Fancier algorithms involve more substantial differences, especially in analysis.)

These are the foundations.

Submanifolds of \mathbf{R}^{n}

Set locally defined by (good) equations:

$$
\mathcal{M}=\left\{x \in \mathbf{R}^{n}: h(x)=0\right\}
$$

Tangent space at x is ker $\operatorname{Dh}(x)$
Interpretations:

1. Linearize $h(x+v) \approx h(x)+\operatorname{D} h(x)[v]$
2. Curves: $c(0)=x \Rightarrow c^{\prime}(0) \in \mathrm{T}_{x} \mathcal{M}$

Functions: $f=\left.\bar{f}\right|_{\mathcal{M}}$ smooth iff \bar{f} smooth
Derivative: $\mathrm{D} f(x)[v]=(f \circ c)^{\prime}(0)=\mathrm{D} \bar{f}(x)[v]$
Differentiate as usual, only on $\mathrm{T}_{x} \mathrm{~S}^{n-1}$.

Retractions, gradients and Hessians

A retraction "smoothly" generates a curve

$$
c(t)=R_{x}(t v)
$$

such that $c(0)=x$ and $c^{\prime}(0)=v$.

The Riemannian gradient of $f: \mathcal{M} \rightarrow \mathbf{R}$ at x is a tangent vector:

$$
\operatorname{grad} f(x)=\operatorname{Proj}_{x}(\operatorname{grad} \bar{f}(x))
$$

$\operatorname{Hess} f(x)[v]=\operatorname{Proj}_{x}(\operatorname{Dgrad} f(x)[v])$

Example on a sphere:

$$
R_{x}(t v)=\frac{x+t v}{\|x+t v\|}
$$

Inner product on $\mathbf{R}^{n}:\langle u, v\rangle=u^{\top} v$
Same inner product on each tangent space.
Let $\bar{f}(x)=\frac{1}{2} x^{\top} A x$. Then $\operatorname{grad} \bar{f}(x)=A x$.
So $\operatorname{grad} f(x)=\left(I_{n}-x x^{\top}\right) A x$
$\operatorname{Hess} f(x)[v]=\operatorname{Proj}_{x}\left(A v-\left(x^{\top} A x\right) v\right)$

In code, a manifold is a bunch of functions

Example: stripped down and simplified spherefactory

```
function M = spherefactory(n)
M.name = @() sprintf('Sphere S^%d', n-1);
M.dim = @() n-1;
M.inner = @(x, u, v) u'*v;
M.norm = @(x, u) norm(u);
M.dist = @(x, y) real(2*asin(.5*norm(x - y)));
```

```
M.exp = @exponential;
M.retr = @(x, u) (x+u)/norm(x+u);
M.invretr = @inverse_retraction;
M.log = @logarithm;
M.hash = @(x) ['z' hashmd5(x)];
M.rand = @() normalize(randn(n, 1));
```

function $M=$ spherefactory (n)
M.inner $=@(x, u, v) u^{\prime *} v$;
M.proj = @(x, u) u - $x^{*}\left(x^{\prime *} u\right)$;
M.egrad2rgrad = M.proj;
M.ehess2rhess = @(x, egrad, ehess, u) ...
M.proj(x, ehess - (x'*egrad)*u);
M.retr $=$ @(x, u) (x+u)/norm(x+u);

Example 2: Synchronization

See this paper: arxiv.org/abs/2312.10794

$$
\varphi(t)=e^{\beta t}
$$

$\max f(X)=\sum_{i j} \varphi\left(x_{i}^{\top} x_{j}\right)$

$$
\left\|x_{1}\right\|=\cdots=\left\|x_{n}\right\|=1
$$

Let's go to Matlab.

A MATHEMATICAL PERSPECTIVE ON TRANSFORMERS

BORJAN GESHKOVSKI, CYRIL LETROUIT, YURY POLYANSKIY, AND PHILIPPE RIGOLLET

Remark 3.7. Let us briefly sketch the particle version of the Wasserstein gradient flow (3.8). When $\mu(t)=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}(t)}$, the interaction energy (3.5) takes the form

$$
\mathrm{E}_{\beta}(X)=\frac{1}{2 \beta n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} e^{\beta\left\langle x_{i}, x_{j}\right\rangle}
$$

where $X=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{S}^{d-1}\right)^{n}$. Denoting by ∇_{X} the gradient associated to the standard Riemannian metric on $\left(\mathbb{S}^{d-1}\right)^{n}$, we get the dynamics

$$
\begin{equation*}
\dot{X}(t)=n \nabla_{X} \mathrm{E}_{\beta}(X(t)) \tag{3.11}
\end{equation*}
$$

Indeed, the gradient on $\left(\mathbb{S}^{d-1}\right)^{n}$ is simply $\nabla=\left(\partial_{1}, \ldots, \partial_{n}\right)$ where ∂_{i} is the gradient in \mathbb{S}^{d-1} acting on the i-th copy in $\left(\mathbb{S}^{d-1}\right)^{n}$. Therefore

$$
\partial_{i} \mathrm{E}_{\beta}(X(t))=\frac{1}{\beta n^{2}} \sum_{j=1}^{n} \mathbf{P}_{x_{i}(t)}\left(e^{\beta\left\langle x_{i}(t), x_{j}(t)\right\rangle} \beta x_{j}(t)\right)=\frac{1}{n} \dot{x}_{i}(t)
$$

Software, book, lectures, slides

Manopt software packages
manopt.org
Matlab
\therefore Julia
? Python
pymanopt.org manoptjl.org with Bamdev Mishra, P.-A. Absil, R. Sepulchre++ by Ronny Bergmann++
by James Townsend, Niklas Koep
and Sebastian Weichwald++

Book (pdf, lecture material, videos) and tutorial slides nicolasboumal.net/book nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.

