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In an era where artificial intelligence (AI) intersects 
with every facet of our lives, the dialogue around its 
sustainable integration becomes paramount. Our re-
cent workshop on AI and Sustainability served as a 
vibrant platform for exploring this critical intersect- 
ion. This document encapsulates the rich discussions, 
insightful keynotes, and thought-provoking intervent- 
ions from leading experts across various domains. 
The aim of the workshop was to illustrate the pivotal 
role that AI plays in shaping a sustainable future. And 
we did so by exploring two crucial complementary as-
pects: Sustainable AI and AI for Sustainability.  

As we stand at the crossroads of technological inno-
vation and environmental responsibility, the insights 
gleaned from this workshop offer a guiding light. This 
summary not only reflects our shared learnings but 
also embodies our commitment to fostering an AI-en-
abled future that harmonizes with our planet's ecolog-
ical boundaries.

Part I: Sustainable AI 
Our first segment explored the concept of Sustaina-
ble AI, emphasizing the need to make AI development 
environmentally conscious and ethically responsible.  

AI, with its ever-growing computational demands 
driven by increasingly complex algorithms, poses a 
significant challenge and brings to light the pressing 
need for AI systems designed with environmental 
conscientiousness at their core. The rapid escalation 
in AI's computational appetite, fueled by intricate al-
gorithms, poses substantial challenges. For instance, 
the training of GPT-3 consumed 1.300.000 kWh, equiv-
alent to 552 tons CO2 emissions, and 700.000 liters of 
water for data center refrigeration, equivalent to the 
annual energy consumption of 126 households. Pre-
dictions even suggest a potential increase, possibly 
reaching 30% of the world's consumption.   

In Figure 1, it can be seen that training recent models 
requires important computational resources and has 
an equivalent in CO2 emissions. The columns in blue 
reflect the emissions of the models, while the violet 
show real-life examples for comparison. In parenthe-
sis, beside the name of the models, it is shown the 
number of parameters of the models to be adjusted. 
It can be seen also that there is not always a direct 
relation between that number and the emissions (see 
for example GPT-3 and OPT, both with 175 billion pa-
rameters, but very different CO2 emissions). 

SUMMARY

Figure 1: CO2 equivalent emissions (Tonnes) by selected machine learning models and real life examples, 2022  
(Source: Luccioni et al., 2022, Strubell et al., 2019, Chart: 2023 AI Index Report).
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Sustainable AI not only seeks to minimize the ecolog-
ical footprint of AI technologies but also emphasizes 
transparency, fairness, and inclusivity in their design 
and deployment. Throughout this part of the work-
shop, we explored how AI can positively contribute to 
ecological well-being. Different perspectives on con-
scious use of tools, calculators for energy consumption 
of our algorithms and several ideas for the so-called 
frugal AI were enumerated, while the perspective of 
the efficiency of the human brain for intelligent tasks 
and the need to continue pursuing ideas on how to 
translate the natural mechanisms of our brain into AI 
models and tools were highlighted.

Part II: AI for Sustainability 
Moving forward, the second part of our workshop fo-
cused on leveraging AI as a powerful tool for address-
ing and mitigating sustainability challenges, acting as 
a formidable ally in the global quest for sustainability. 

The workshop unfolded against the backdrop of our 
finite planetary resources; a theme poignantly intro-
duced by Professor Gunnar Tufte from NTNU. 

AI for Sustainability explores how innovative applica-
tions of artificial intelligence can enhance our ability 
to monitor, analyze, and solve complex environmental 
and social issues. Our discussions spanned the spec-
trum of AI's impact, touching on its integration into city 
planning, urban life, and industry-specific challenges 
such as predictive maintenance and supply chain op-
timization. Notably, the dialogue ventured beyond the 
technical intricacies of AI, delving into the psycho-soci-
ological implications and the pressing need for regula-
tory frameworks to guide its ethical deployment. 

Governance for sustainable and just use of AI in ur-
ban life e.g., will seek answers to new important ques-
tions when shaping sustainable futures and decision 
making. Examples here are; How to best care for 
sustainability in hybrid governance processes?; How 
to translate policy goals, such as emission reduction 
or accessibility into AI?; How to co-create strategies 
for hybrid governance that allow for open trade-offs 
between individual, market, and public interests – es-
pecially in the light of climate crisis?; and Who should 
be involved an how: developers, policymakers, com-
pany leaders, civil society? And what skills is required? 
(Frauke Behrendt, TU/e). 

A recurrent theme was the balance between techno-
logical advancement and environmental stewardship. 
The workshop underscored the imperative to harness 
AI not merely as a tool for efficiency but as a catalyst 
for sustainable innovation. As we navigated the com-
plexities of Moore's law, energy consumption, and the 
limitations imposed by physical constraints, the dia-
logue converged on the critical need for a responsible 
approach to AI development.

This workshop summary continues with a closer look 
at the workshop’s aspect of Sustainable AI before end-
ing with inspiration from neuroscience. 
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SUSTAINABLE AI
 
During the last years, the accuracy of the modern AI 
models increased, but at the expense of an impor-
tant increase in the complexity of those models, that 
in turn reflects in crescent energy consumptions, and 
their equivalent CO2 emissions (Figure 1). This is the so-
called “red AI”, driven almost exclusively by accuracy. 

However, for AI to effectively support an appropriate 
energy transition, the initial step is to develop new 
models and algorithms that incorporate a multidi-
mensional assessment. This entails considering en-
vironmental impacts, alongside social and economic 
factors, to ensure a balanced approach.

How to measure energy consumption of 
algorithms
But, how to measure the energy consumption of algo-
rithms, so we can compare several alternatives? Thus, 
our first quest revolves around quantifying the envi-
ronmental footprint of software and enhancing its en-
ergy efficiency, all the while keeping a keen eye on the 
socio-economic dimensions intertwined with software 
sustainability. To put this into perspective, consider 
the energy footprint of streaming services like Netflix. 
An hour of streaming equates to the carbon emissions 
from driving a car 200 meters. While seemingly insig-
nificant in isolation, this scales dramatically when we 
account for the global consumption rates, painting a 
stark picture of the environmental impact.

The imperative to mitigate software's environmental 
footprint is clear, echoing Tom DeMarco's sentiment 
that control is predicated on our ability to measure. 
Our exploration into sustainable AI practices is two-
fold, encompassing both software- based and hard-
ware-based approaches to energy measurement. Each 
pathway, with its distinct methodologies and tools, 
offers insights into the intricate dance between tech-
nological innovation and environmental stewardship.
 
Then, the workshop explored different perspectives 
and models for a more sustainable AI, such as:

Reducing the footprint of Deep Learning 
(DL) Models 
DL is one of the recent machine learning models that 
has led to significant advancements in various fields, 
such as computer vision, natural language processing 
or speech recognition. They consist of multiple neu-
ral networks of interconnected nodes, and are often 
computationally intensive, requiring large amounts 
of data and processing power to train efficiently. The 
training process involves iterative computations and 
adjustments to millions or even billions of parame-
ters, leading to significant energy consumption, which 
can contribute to environmental concerns, including 
carbon emissions. 

To mitigate the energy consumption associated with 
deep learning, researchers are exploring various ap-
proaches, including optimizing algorithms for effi-
ciency, developing hardware accelerators tailored for 
deep learning tasks, and exploring alternative training 
methods such as transfer learning and self-supervised 
learning. Additionally, efforts are underway to devel-
op more energy-efficient training techniques and to 
increase the utilization of renewable energy sources 
in data centers to reduce the environmental impact 
of deep learning applications. There are also options 
available for reducing the carbon footprint for the 
models already in inference, such as: 

 y Quantization, which involves honing the pre-
cision of data in model training, transitioning 
from high-bit values to more compact formats 
like integers or 8-bit representations. The magic 
of quantization lies in its potential to significantly 
reduce model size—up to 16-fold—while meticu-
lously preserving accuracy, often achievable with 
an eightfold reduction. This balance is crucial in 
maintaining the integrity of model outputs while 
embracing energy efficiency.

 y Distillation, which involves the transfer of know-
ledge from a larger 'teacher' model to a more 
streamlined 'student' model. The aim here is to 
cultivate a student model that mirrors the teach-
er's predictive prowess, often surpassing the per-
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formance of directly training the student model 
on the dataset. 

 y Pruning, in which strategic elimination of selected 
nodes and channels within deep learning architec-
tures, refining their structure and functionality is 
carried out. While the primary goal is to enhance 
accuracy, pruning also holds the potential to di-
minish the storage demands of the model. How-
ever, its contribution to energy savings is some-
what constrained, given the necessity to load the 
complete model into memory, especially when 
dealing with sparse matrices. 

Beyond these more conventional techniques, there 
are also other approaches such as low-rank quanti-
zation, sparse representations, and feature-matched 
compression.

Long-life learning models 
Long-life learning models refer to a category of ma-
chine learning techniques designed to enable AI sys-
tems to continuously learn and adapt over time from 
new data and experiences without catastrophically 
forgetting previously learned knowledge. These mod-
els address the challenge of retaining and leveraging 
past knowledge while accommodating new informa-
tion, which is crucial for tasks requiring ongoing ad-
aptation to changing environments or requirements. 
This adaptive learning approach not only aligns with 
our innate learning mechanisms but also presents a 
promising avenue for reducing the environmental 
footprint of AI systems.

Key strategies in long-life learning models include lev-
eraging techniques such as elastic weight consolida-
tion (EWC), replay buffers, and dynamic architectures 
to manage the trade-off between retaining old knowl-
edge and accommodating new information. By ena-
bling AI systems to learn incrementally and adaptively, 
long-life learning models aim to facilitate the develop-
ment of more flexible, robust, and capable AI systems 
for real-world applications. Furthermore, by fostering 
models that build upon existing knowledge, we can 
significantly reduce the need for resource-intensive 

training from scratch, thereby mitigating both energy 
and water consumption in AI operations. By embrac-
ing these methodologies, we can pave the way for AI 
systems that are not only intelligent and versatile but 
also environmentally conscious and sustainable.

Federated Learning and Edge computing 
Traditional machine learning uses training data that is 
centralized, but the rise of distributed data generation 
— be it across different institutions or an array of IoT 
devices—presents new challenges and opportunities 
for decentralization. An available and more environ-
mental-friendly option is federated learning, a collabo-
rative framework where diverse devices contribute to 
developing a comprehensive model, each leveraging 
its local data. After local training, these partial models 
converge through a coordinating device, culminating 
in a unified global model. This model, once refined, is 
redistributed to the participant devices for application 
on new data. Besides, federated learning epitomizes 
the collaborative spirit of AI, fostering models that re-
spect privacy and computational constraints. 

Personalized and greener models 
At its core, personalization tailors AI-driven process-
es to align with the unique preferences, needs, or ex-
pectations of individual users. This aspect, intrinsic to 
the digital experience, underscores the indispensabil-
ity of personalization across various AI applications, 
transcending mere convenience to embody a deep-
er connection between technology and its human 
counterparts. 

Personalization's spectrum extends far beyond tar-
geted advertisements, encapsulating domains like 
personalized medicine, where treatment regimens are 
fine-tuned to individual patient profiles, or the auto-
motive industry's adaptive driving modes, attuned to 
the nuances of a driver's habits and prevailing road 
conditions. Such applications not only enhance user 
engagement but also foster a more equitable and 
trustworthy interaction with AI systems.
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However, personalization usually comes with a cost — 
financially and ecologically. Tailoring AI to individual 
users necessitates a granular understanding of each 
user, thereby amplifying the model's computational 
demands. Thus, it becomes imperative to scrutinize 
and steer our policies and research endeavors to-
wards sustainability in AI personalization.

Personalization manifests in two primary forms: per-
sonalized outputs, where the AI's output varies to 
cater to individual users, and the personalization of 
presentation, aimed at enhancing interpretability and 
user trust. Both avenues, while enriching the user 
experience, beckon us to weigh their environmental 
implications carefully. However, it is possible to min-
imize the footprint of the models while performance 
is maintained or even increased, a relevant question 
that involves both the use of quality data as well as a 
thoughtful model design. 

And last, but not least: 

Inspiration from neuroscience; 
Neuromorphic computing
One option for sustainability involves seeking inspira-
tion from Neuroscience.  The human brain operates 
with remarkable energy efficiency, utilizing approx-
imately 20 watts of power— a stark contrast to the 
high energy demands of contemporary AI systems. Be-
sides, the brain’s proficiency in learning from unique 
experiences, its resilience to noise, and its adept han-
dling of multimodal inputs are attributes that AI sys-
tems aspire to emulate. 

Neuromorphic computing (an approach to artificial 
intelligence that seeks to mimic the architecture and 
function of the human brain) is a concept introduced 
by Carver Mead, and encapsulates this aspiration to-
wards brain-inspired computing, offering a promising 
pathway for AI's evolution. There are several relevant 
advantages of neuromorphic computing that are to 
be taken into account for different aspects of sus-
tainability:

 y Real-life learning and adaptability, as these 
systems can learn and adjust with few data, re-
sponding quickly to changing environments and 
situations, overcoming the extensive training data 
requirements of most present AI systems. 

 y Energy-efficiency, by leveraging electronic cir-
cuits inspired by biological neurons. This could 
allow also for working in resource-limited settings.

 y Resilience to noise and error, as informa-
tion is processed through distributed networks 
of neurons.

 y Privacy and security, processing data locally, and 
ensuring privacy for sensitive information.

Through research in the area, deeper insights into AI 
operation might be gained, leading to more transpar-
ent and explainable systems.

Amparo Alonso Betanzos
Professor at the University of Coruna and NTNU
Head of workshop organizing committee



Energy Transition

Nicola Ferrari RF / Alamy


